一个信号往往包含多个维度,各个维度之间可能包含较强的相关性。下图表示的是一组二维信号x=(x1,x2),可以看到数据点基本上分布在x2=x1这条直线上,二者存在很强的相关性(也就是确定x1之后,就能确定x2的大致范围)。
主成分分析(Principal Component Analysis, PCA)的目的在于寻找到一组基,将信号投影到这组基上面,从而能够去除信号各个维度之间的相关性。如下图,u1和u2是通过PCA找到的两个基向量,将信号投影到该基向量上,信号各维度之间的相关性就基本被去除了。
信号各维度之间的相关性可以用相关系数来表示。假设一个维度为x1,另一个维度为x2,二者都相当于随机变量。那么相关系数为:
如果两个变量没有相关性,那么相关系数为0。PCA的目的就在于使得信号任意两个维度之间的相关系数都变成0。上式分子为协方差,我们只考虑将协方差变为0。协方差公式如下:
![][cov]
假设有一组信号,将它们表示为一个矩阵X0,维度为d*N。X0的每一列代表一个信号,d表示信号的维度,N表示有N个信号。X表示各维度去除均值之后的信号。那么信号各维度两两之间的协方差可以表示为一个协方差矩阵:
要去除各维度之间的相关性,相当于让S的非对角元素全变为0,使S对角化。因此我们需要找到一个矩阵U,使S对角化:
正好,S的特征向量组成的矩阵能达到这一目的,因此把S的特征向量放入U的每一列中即可。U的列向量即为主成分向量。D为S的特征值组成的对角阵。我们把信号投影到特征向量中,得到的信号为:
那么Z的协方差矩阵为:
可见,投影后的信号Z各维度之间不存在相关性。实际中我们不需要将X投影到所有的主成分向量上。可以证明,只需要将X投影到前k个最大特征值对应的特征向量上即可,其余特征向量上的投影分量为噪声。k的数量往往远小于信号原来的维度,因此PCA可以对信号进行降维。只需要通过前k个主成分分量,即可复原原信号,并使恢复误差任意小。
S的维度为d*d。由于实际情况下d很大,远远大于信号个数N,直接求S的特征向量复杂度很高。考虑下面的矩阵:
可见,可以先求出S0的特征向量u0,S的特征向量为Xu0。由于S0的维度较低,计算量极大地减少。要求S0的特征向量,最直接的方法是做特征值分解。不过由于S0是半正定矩阵,也可以通过SVD来求解。下面证明SVD分解与特征值分解之间的关系。对于一个矩阵A(不一定是方阵),SVD分解如下:
上述第三个等式相当于对$AAT$做特征值分解,U为$AAT$的特征值向量矩阵,Sigma平方为特征值矩阵。由此可见,要求$AA^T$的特征向量,只需对A做SVD分解,取A的左特征向量矩阵即可。
下面给出MATLAB代码示例。通过PCA分解对ORL人脸库中的人脸图片做降维处理,并用前k个主成分(即最大的k个特征值对应的特征向量)将人脸复原。
PCA代码:
function [avg,U]=fastPCA(X,k)
% X: X的每一列代表一张人脸图片
% k: 降维后的信号维度
%%
% 版本1:通过特征值分解求特征向量
avg=mean(X,2);
X=bsxfun(@minus,X,avg);
[~,N]=size(X);
S0=1/N*(X'*X);
[U0,~]=eig(S0);
U0=U0(:,end:-1:1); % V0原本是按特征值升序排列的,要调换顺序
U=X*U0(:,1:k); % 得到真正协方差矩阵的主成分向量
for i=1:size(U,2)
U(:,i)=U(:,i)/norm(U(:,i)); % 向量归一化
end
%%
% 版本2:通过SVD分解求S0的特征向量
% 这个版本还有点问题,速度太慢
% avg=mean(X,2);
% X=bsxfun(@minus,X,avg);
% [~,N]=size(X);
% [U0,~,~]=svd(X');
% U=X*U0(:,1:k); % 得到真正协方差矩阵的主成分向量
% for i=1:size(U,2)
% U(:,i)=U(:,i)/norm(U(:,i)); % 向量归一化
% end
主函数:
% 通过少量几个主成分来恢复人脸
clear;
load orl_data.mat; % 人脸库,每行代表一张人脸图像
k=350; % 把人脸降到k维,用k个主成分恢复人脸
X=Faces; % 矩阵的每一列代表一张人脸
tic;
[avg,U]=fastPCA(X,k);
toc;
X_extract=bsxfun(@minus,X,avg); % 减去均值
X_lowdim=U'*X_extract; % 降维后的图像表达
X_recv=U*X_lowdim; % 用k个主成分分量恢复人脸
X_recv=bsxfun(@plus,X_recv,avg); % 加上均值
im=reshape(X_recv(:,1),[112,92]);
figure,imshow(im,[]);
% 显示前16个主成分
u=zeros(112,92);
figure
for i=1:16
u(:)=U(:,i);
subplot(4,4,i),imshow(u,[]);
end
下图图1为原图,分别用50个主成分、200个主成分和350个主成分复原人脸图像,结果如下:
[cov]: http://latex.codecogs.com/svg.latex?cov(x_1,x_2)=\frac{1}{N}\Sigma_{i=1}N(x_1{(i)}-\bar{x_1})(x_2^{(i)}-\bar{x_2})