激活函数的选择

“激活函数”,又称“非线性映射函数”,是深度卷积神经网络中不可或缺的关键模块。可以说,深度网络模型其强大的表示能力大部分便是由激活函数的非线性带来的。

1.Sigmoid型函数

Sigmoid型函数也称Logistic函数:

其函数形状如下图(a)所示。很明显可以看出,经过Sigmoid型函数作用后,输出响应的值域被压缩到[0, 1] 之间,而0对应了生物神经元的“抑制状态”,1则恰好对应了“兴奋状态”。但对于Sigmoid函数两端大于5(或小于−5)的区域,这部分输出会被压缩到1(或0)。这样的处理会带来梯度的“饱和效应”(saturation effect)。不妨对照Sigmoid型函数的梯度图(图(b)),大于5(或小于−5)部分的梯度接近0,这会导致在误差反向传播过程中导数处于该区域的误差很难甚至无法传递至前层,进而导致整个网络无法正常训练。

从上图(a)中可观察到Sigmoid型激活函数值域的均值并非为0,而是全为正,这样的结果实际上并不符合我们对神经网络内数值的期望(均值)应为0的设想。

2.tanh(x) 型函数

tanh(x) 型函数是在Sigmoid型函数基础上为解决均值问题提出的激活函数:

tang(x) = 2S(2x)-1。tanh(x) 型函数又称作双曲正切函数(hyperbolic tangent function),其函数范围是(−1,+1),输出响应的均值为0。但由于tanh(x) 型函数仍基于Sigmoid型函数,使用tanh(x) 型函数依然会发生“梯度饱和”现象。

3.修正线性单元(ReLU)

为了避免梯度饱和现象的发生,将修正线性单元(Rectified Linear Unit,简称ReLU)引入神经网。ReLU函数是目前深度卷积神经网络中最为常用的激活函数之一。ReLU函数实际上是一个分段函数,其定义为:

                                                                     ReLU(x) = MAX{0, x}.

与前两个激活函数相比:ReLU函数的梯度在x ≥ 0 时为1,反之为0(如上图所示);对x ≥ 0 部分完全消除了Sigmoid型函数的梯度饱和效应。计算复杂度上,ReLU函数也相对前两者的指数函数计算更为简单。同时,实验中还发现ReLU函数有助于随机梯度下降方法收敛,收敛速度约快6倍左右。不过,ReLU函数也有自身缺陷,即在x < 0 时,梯度便为0。换句话说,对于小于0的这部分卷积结果响应,它们一旦变为负值将再无法影响网络训练——这种现象被称作“死区”。

4.Leaky ReLU

为了缓解“死区”现象,研究者将ReLU函数中x < 0 的部分调整为f(x) = α·x,其中α 为0.01或0.001数量级的较小正数。这种新型的激活函数被称作“Leaky ReLU”:

可以发现,原始ReLU函数实际上是Leaky ReLU函数的一个特例,即α = 0。不过由Leaky ReLU中α 为超参数,合适的值较难设定且较为敏感,因此Leaky ReLU函数在实际使用中的性能并不十分稳定。

5.参数化ReLU

参数化ReLU的提出很好的解决了Leaky ReLU中超参数α 不易设定的问题:参数化ReLU直接将α 也作为一个网络中可学习的变量融入模型的整体训练过程。在求解参数化ReLU时,文献中仍使用传统的误差反向传播和随机梯度下降,对于参数α 的更新遵循链式法则,具体推导细节在此不过多赘述,感兴趣的读者可参考文献Surpassing human-level performance on ImageNet classification。实验结果验证方面,曾在一个14层卷积网络上对比了ReLU和参数化ReLU在ImageNet 2012数据集上的分类误差(top-1和top-5)。

表1  不同设定下学到的参数化ReLU中超参数α 取值

网络结构如表1,每层卷积操作后均有参数化ReLU操作。表中第二列和第三列数值分别表示各层不同通道(channel)共享参数α 和独享参数α1时网络自动学习的α 取值。

表2  ReLU与参数化ReLU在 ImageNet 2012 数据集上分类错误率对比

实验结果如表2中所示。可以发现,在分类精度上,使用参数化ReLU作为激活函数的网络要优于使用原始ReLU的网络,同时自由度较大的各通道独享参数的参数化ReLU性能更优。另外,需指出表1中几个有趣的观察:

        1)与第一层卷积层搭配的参数化ReLU的α 取值(表1中第一行0.681和0.596)远大于ReLU中的0。这表明网络较浅层所需非线性较弱。同时,我们知道浅层网络特征一般多为表示“边缘”、“纹理”等特性的泛化特征。这一观察说明对于此类特征正负响应(activation)均很重要;这也解释了固定α 取值的ReLU(α = 0)和Leaky ReLU相比参数化ReLU性能较差的原因。

        2)请注意独享参数设定下学到的α 取值(表1中的最后一列)呈现由浅层到深层依次递减的趋势,说明实际上网络所需的非线性能力随网络深度增加而递增。

不过万事皆具两面性,参数化ReLU在带来更大自由度的同时,也增加了网络模型过拟合的风险,在实际使用中需格外注意。

6.随机化ReLU

另一种解决α 超参设定的方式是将其随机化,这便是随机化ReLU。对于随机化ReLu中α 的设定,其取值在训练阶段服从均匀分布,在测试阶段则将其指定为该均匀分布对应的分布期望(l+u)/2:

其中, α′ ∼ U(l, u), l < u, and l, u ∈ [0, 1)

7.指数化线性单元(ELU)

显然,ELU具备ReLU函数的优点,同时ELU也解决了ReLU函数自身的“死区”问题。不过,ELU函数中的指数操作稍稍增大了计算量。实际使用中,ELU中的超参数λ 一般设置为1。

指数化线性单元ELU及其导数
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,830评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,992评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,875评论 0 331
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,837评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,734评论 5 360
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,091评论 1 277
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,550评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,217评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,368评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,298评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,350评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,027评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,623评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,706评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,940评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,349评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,936评论 2 341

推荐阅读更多精彩内容