限流算法简介及Guava RateLimiter令牌桶限流介绍

参考

  1. 常用4种限流算法介绍及比较
  2. 超详细的Guava RateLimiter限流原理解析

限流算法简介

1.计数器(固定窗口)算法

计数器算法是使用计数器在周期内累加访问次数,当达到设定的限流值时,触发限流策略。下一个周期开始时,进行清零,重新计数。
对于秒级以上的时间周期来说,会存在一个非常严重的问题,那就是临界问题

2. 滑动窗口算法

滑动窗口算法是将时间周期分为N个小周期,分别记录每个小周期内访问次数,并且根据时间滑动删除过期的小周期。
当滑动窗口的格子划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确,此算法可以很好的解决固定窗口算法的临界问题。

3. 漏桶算法

漏桶是按照常量固定速率流出请求,当流入的请求数累积到漏桶容量时,则新流入的请求被拒绝
漏桶限制的是常量流出速率

4. 令牌桶算法

令牌桶是按照固定速率往桶中添加令牌,请求是否被处理需要看桶中令牌是否足够,当令牌数减为零时则拒绝新的请求;
令牌桶限制的是平均流入速率,允许突发请求,只要有令牌就可以处理

Guava RateLimiter Demo

1.平滑突发限流
public void testSmoothBursty() {
    RateLimiter r = RateLimiter.create(5);
    while (true) {
      System.out.println("get 1 tokens: " + r.acquire() + "s");
    }
    /**
     * output: 基本上都是0.2s执行一次,符合一秒发放5个令牌的设定。
     * get 1 tokens: 0.0s 
     * get 1 tokens: 0.182014s
     * get 1 tokens: 0.188464s
     * get 1 tokens: 0.198072s
     * get 1 tokens: 0.196048s
     * get 1 tokens: 0.197538s
     * get 1 tokens: 0.196049s
     */
}
2.平滑预热限流
public void testSmoothwarmingUp() {
    RateLimiter r = RateLimiter.create(2, 3, TimeUnit.SECONDS);
    while (true)
    {
      System.out.println("get 1 tokens: " + r.acquire(1) + "s");
      System.out.println("get 1 tokens: " + r.acquire(1) + "s");
      System.out.println("get 1 tokens: " + r.acquire(1) + "s");
      System.out.println("get 1 tokens: " + r.acquire(1) + "s");
      System.out.println("end");
      /**
       * output:
       * get 1 tokens: 0.0s
       * get 1 tokens: 1.329289s
       * get 1 tokens: 0.994375s
       * get 1 tokens: 0.662888s  上边三次获取的时间相加正好为3秒
       * end
       * get 1 tokens: 0.49764s  正常速率0.5秒一个令牌
       * get 1 tokens: 0.497828s
       * get 1 tokens: 0.49449s
       * get 1 tokens: 0.497522s
       */
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,242评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,769评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,484评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,133评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,007评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,080评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,496评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,190评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,464评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,549评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,330评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,205评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,567评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,889评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,160评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,475评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,650评论 2 335