「r<-函数」do.call 的妙用——参数更新

R 中的 do.call() 是我极少用到的一个函数,不过它在很多情况下是蛮有用的,之前我也做过简单的介绍。

它可以在实际调用函数时将参数以列表的形式传入,下面是一个简单的函数:

f <- function(x) print(x^2)

我们可以用下面的方式调用 do.call()

do.call(f, list(x = 4))
#> [1] 16

大部分情况下这样的用法是啰嗦的,直接 f(4) 其实已经解决上面的问题了。

最近我需要批量更新参数时发现了 do.call() 的好用之处。

在批量建模时可能需要比较对建模函数设定不同的参数,我们以求和函数作为建模函数举例。

假设建模需要 4 个参数,造一个类似的求和函数:

Sum <- function(a = 1, b = 2, c = 3, d = 4) {
  return(sum(a, b, c, d))
}

而我们需要批量运行这个函数,而且只修改其中 3 个参数,另外参数是外部定义的,比如说其他使用这个函数的人。

有可能只使用 a, b, c:

Sum(a = 1, b = 3, c = 5)
#> [1] 13

也可能使用 b, c, d。

Sum(d = 1, b = 3, c = 5)
#> [1] 10

这并不能直接通过 for 循环、apply 之类的操作进行批量调用。我们来看看 do.call() 如何解决这个问题。

我们构建一个参数矩阵:

Args <- expand.grid(
  c(1, 2),
  c(3, 4, 5),
  c(6, 7, 8, 9)
)

Args
#>    Var1 Var2 Var3
#> 1     1    3    6
#> 2     2    3    6
#> 3     1    4    6
#> 4     2    4    6
#> 5     1    5    6
#> 6     2    5    6
#> 7     1    3    7
#> 8     2    3    7
#> 9     1    4    7
#> 10    2    4    7
#> 11    1    5    7
#> 12    2    5    7
#> 13    1    3    8
#> 14    2    3    8
#> 15    1    4    8
#> 16    2    4    8
#> 17    1    5    8
#> 18    2    5    8
#> 19    1    3    9
#> 20    2    3    9
#> 21    1    4    9
#> 22    2    4    9
#> 23    1    5    9
#> 24    2    5    9

假设现在是使用 a, b, c 3 个参数:

colnames(Args) <- c("a", "b", "c")
head(Args)
#>   a b c
#> 1 1 3 6
#> 2 2 3 6
#> 3 1 4 6
#> 4 2 4 6
#> 5 1 5 6
#> 6 2 5 6

创建批处理函数:

batchSum <- function(ArgsMat) {
  args <- list()
  for (i in 1:nrow(ArgsMat)) {
    args_update <- c(args, ArgsMat[i, , drop = FALSE])
    do.call(Sum, args = args_update)
  }
}

为了查看调用效果,我们修改下 Sum() 函数:

Sum <- function(a = 1, b = 2, c = 3, d = 4) {
  message("a:", a, " b:", b, " c:", c, " d:", d)
  return(sum(a, b, c, d))
}

调用参数矩阵试试:

batchSum(Args)
#> a:1 b:3 c:6 d:4
#> a:2 b:3 c:6 d:4
#> a:1 b:4 c:6 d:4
#> a:2 b:4 c:6 d:4
#> a:1 b:5 c:6 d:4
#> a:2 b:5 c:6 d:4
#> a:1 b:3 c:7 d:4
#> a:2 b:3 c:7 d:4
#> a:1 b:4 c:7 d:4
#> a:2 b:4 c:7 d:4
#> a:1 b:5 c:7 d:4
#> a:2 b:5 c:7 d:4
#> a:1 b:3 c:8 d:4
#> a:2 b:3 c:8 d:4
#> a:1 b:4 c:8 d:4
#> a:2 b:4 c:8 d:4
#> a:1 b:5 c:8 d:4
#> a:2 b:5 c:8 d:4
#> a:1 b:3 c:9 d:4
#> a:2 b:3 c:9 d:4
#> a:1 b:4 c:9 d:4
#> a:2 b:4 c:9 d:4
#> a:1 b:5 c:9 d:4
#> a:2 b:5 c:9 d:4

可以看出来整个过程中 d 是没有变的。我们再修改参数矩阵:

colnames(Args) <- c("a", "c", "d")

再次调用函数:

batchSum(Args)
#> a:1 b:2 c:3 d:6
#> a:2 b:2 c:3 d:6
#> a:1 b:2 c:4 d:6
#> a:2 b:2 c:4 d:6
#> a:1 b:2 c:5 d:6
#> a:2 b:2 c:5 d:6
#> a:1 b:2 c:3 d:7
#> a:2 b:2 c:3 d:7
#> a:1 b:2 c:4 d:7
#> a:2 b:2 c:4 d:7
#> a:1 b:2 c:5 d:7
#> a:2 b:2 c:5 d:7
#> a:1 b:2 c:3 d:8
#> a:2 b:2 c:3 d:8
#> a:1 b:2 c:4 d:8
#> a:2 b:2 c:4 d:8
#> a:1 b:2 c:5 d:8
#> a:2 b:2 c:5 d:8
#> a:1 b:2 c:3 d:9
#> a:2 b:2 c:3 d:9
#> a:1 b:2 c:4 d:9
#> a:2 b:2 c:4 d:9
#> a:1 b:2 c:5 d:9
#> a:2 b:2 c:5 d:9

此时 b 是没有变的。

以上我们通过 do.call() 实现了内部函数对外部输入的自动匹配。

该操作我把它实际用在了批量 Keras 模型的调用上:https://github.com/ShixiangWang/sigminer.prediction/blob/f64bcdf7bc8d5d819d48edc4344ed9af8b984738/R/batch_modeling_and_fitting.R#L37-L63,有兴趣的读者可以看一下。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342