共享单车项目分析

简介:随着共享单车的星期,这次探索三大美国城市的自行车共享系统相关的数据:芝加哥、纽约和华盛顿特区,帮助共享单车公司得到一些关键性的数据信息,例如哪个起始车站最热门,哪一趟行程最热门等等,来对共享单车的投放给予一定帮助。

一、分析步骤

  • 编写代码导入数据,并通过计算描述性统计数据回答有趣的问题。
  • 编写一个脚本,该脚本会接受原始输入并在终端中创建交互式体验,以展现这些统计信息。
  • 提出问题
  • 终端应用脚本

二、提出问题

  • 起始时间(Start Time 列)中哪个月份最常见?
  • 起始时间中,一周的哪一天(比如 Monday, Tuesday)最常见?
  • 起始时间中,一天当中哪个小时最常见?
  • 总骑行时长(Trip Duration)是多久,平均骑行时长是多久?
  • 哪个起始车站(Start Station)最热门,哪个结束车站(End Station)最热门?
  • 哪一趟行程最热门(即,哪一个起始站点与结束站点的组合最热门)?
  • 每种用户类型有多少人?
  • 每种性别有多少人?
  • 出生年份最早的是哪一年、最晚的是哪一年,最常见的是哪一年?

三、代码实现

工具:Python
文本编辑器:Pycharm

import time
import pandas as pd
import numpy as np


CITY_DATA = { 'chicago': 'chicago.csv',
              'new york city': 'new_york_city.csv',
              'washington': 'washington.csv' }

def get_filters():
    """
    Asks user to specify a city, month, and day to analyze.

    Returns:
        (str) city - name of the city to analyze
        (str) month - name of the month to filter by, or "all" to apply no month filter
        (str) day - name of the day of week to filter by, or "all" to apply no day filter
    """
    print('Hello! Let\'s explore some US bikeshare data!')
    # get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
    city = input("Which city do you want to analyze? input :chicago, new york city, washington\n").lower()
    while True:
        if city not in CITY_DATA.keys():
            city = input('Invalid input======\nwould you like to see data for chicago, '
                         'new youk city, or washington?')
        else:
            break

    # get user input for month (all, january, february, ... , june)
    months = ['all', 'january', 'february', 'march', 'april', 'may', 'june']
    month = input("Which month data do you want to analyze?input :all,january, february, "
                  "march, april, may, june\n").lower()
    while True:
        if month not in months:
            month = input('Invalid input======\nWhich month data do you want to analyze?input :all,january, february,'
                  'march, april, may, june\n').lower()
        else:
            break

    # get user input for day of week (all, monday, tuesday, ... sunday)
    days = ['all', 'monday','tuesday','wednesday','thursday','friday','saturday','sunday']
    day = input("Which day of week do you want to analyze? input:"
                "all,monday, tuesday, wednesday, thursday, friday, saturday, sunday").lower()
    while True:
        if day not in days:
            day = input("Invalid input======\nWhich day of week do you want to analyze? input:"
                "all,monday, tuesday, wednesday, thursday, friday, saturday, sunday").lower()
        else:
            break

    print('-'*40)
    return city, month, day


def load_data(city, month, day):
    """
    Loads data for the specified city and filters by month and day if applicable.

    Args:
        (str) city - name of the city to analyze
        (str) month - name of the month to filter by, or "all" to apply no month filter
        (str) day - name of the day of week to filter by, or "all" to apply no day filter
    Returns:
        df - Pandas DataFrame containing city data filtered by month and day
    """
    # load data file into a dataframe
    df = pd.read_csv(CITY_DATA[city])

    # convert the Start Time column to datetime
    df['Start Time'] = pd.to_datetime(df['Start Time'])

    # extract month and day of week from Start Time to create new columns
    df['month'] = df['Start Time'].dt.month
    df['day_of_week'] = df['Start Time'].dt.weekday_name

    # filter by month if applicable
    if month != 'all':
        # use the index of the months list to get the corresponding int
        months = ['january', 'february', 'march', 'april', 'may', 'june']
        month = months.index(month) + 1

        # filter by month to create the new dataframe
        df = df[df['month'] == month]

    # filter by day of week if applicable
    if day != 'all':
        # filter by day of week to create the new dataframe
        df = df[df['day_of_week'] == day.title()]
    return df


def time_stats(df):
    """Displays statistics on the most frequent times of travel."""

    print('\nCalculating The Most Frequent Times of Travel...\n')
    start_time = time.time()

    # display the most common month
    common_month = df['month'].mode()[0]
    print('The most common month: ', common_month)

    # display the most common day of week
    common_day_of_week = df['day_of_week'].mode()[0]
    print('The most common day of week: ', common_day_of_week)

    # display the most common start hour
    df['start_hour'] = df['Start Time'].dt.hour
    common_start_hour = df['start_hour'].mode()[0]
    print('The most common start hour: ', common_start_hour)


    print("\nThis took %s seconds." % (time.time() - start_time))
    print('-'*40)


def station_stats(df):
    """Displays statistics on the most popular stations and trip."""

    print('\nCalculating The Most Popular Stations and Trip...\n')
    start_time = time.time()

    # display most commonly used start station
    common_start_station = df['Start Station'].mode()[0]
    print('The most commonly used start station: ', common_start_station)

    # display most commonly used end station
    common_end_station = df['End Station'].mode()[0]
    print('The most commonly used end station: ', common_end_station)

    # display most frequent combination of start station and end station trip
    df['Station'] = df['Start Station'] + df['End Station']
    frequent_station = df['Station'].mode()[0]
    print('The most frequent station: ', frequent_station)

    print("\nThis took %s seconds." % (time.time() - start_time))
    print('-'*40)


def trip_duration_stats(df):
    """Displays statistics on the total and average trip duration."""

    print('\nCalculating Trip Duration...\n')
    start_time = time.time()

    # display total travel time
    total_travel_time = df['Trip Duration'].sum()
    print('The total trabel time: ', total_travel_time)

    # display mean travel time
    mean_trabel_time = df['Trip Duration'].mean()
    print('The mean travel time: ', mean_trabel_time)

    print("\nThis took %s seconds." % (time.time() - start_time))
    print('-'*40)


def user_stats(df):
    """Displays statistics on bikeshare users."""

    print('\nCalculating User Stats...\n')
    start_time = time.time()

    # Display counts of user types
    count_user_types = df['User Type'].value_counts()
    print('Counts of user types: ', count_user_types)

    # Display counts of gender
    try:
        count_gender = df['Gender'].value_counts()
        print('Counts of gender: ', count_gender)
    except KeyError:
        print('Counts of gender:oh sorry, this city have no this data.')

    # Display earliest, most recent, and most common year of birth
    try:
        earliest_birth = df['Birth Year'].min()
        most_recent_birth = df['Birth Year'].max()
        most_common_birth = df['Birth Year'].mode()[0]
        print('Earliest year of birth:',earliest_birth)
        print('Most recent year of birth',most_recent_birth)
        print('Most common year of birth',most_common_birth)
    except KeyError:
        print('oh sorry, this city have no Birth Year data.')

    print("\nThis took %s seconds." % (time.time() - start_time))
    print('-'*40)


def main():
    while True:
        city, month, day = get_filters()
        df = load_data(city, month, day)

        time_stats(df)
        station_stats(df)
        trip_duration_stats(df)
        user_stats(df)

        restart = input('\nWould you like to restart? Enter yes or no.\n')
        if restart.lower() != 'yes':
            break


if __name__ == "__main__":
    main()

四、互动式体验

该文件是一个脚本,它接受原始输入在终端中创建交互式体验,来回答有关数据集的问题。
输入想要查看的问题:

输入.png

得出答案:
答案.png

Ps:脚本还可以持续地优化,这次只是做了一个简易的版本,另外还可以在脚本加入可视化的工具,输入需要的数据,自动生成需要的图表,这就不要太方便了啊啊啊啊啊!!!!!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345