图的基本算法(单源最短路径)

在许多路由问题中,寻找图中一个顶点到另一个顶点的最短路径或最小带权路径是非常重要的提炼过程。正式表述为,给定一个带权有向图G = (V, E) , 顶点sv中顶点t的最短路径为在边集E中连接st代价最小的路径。要做到这一点首先要解决更为一般的单源最短路径问题。在单源最短路径问题中,计算从一个起始顶点s到其他与之相邻顶点之间的最短路劲。

Dijkstra算法##

解决单源最短路径问题的方法之一就是Dijkstra算法。Dijkstra算法会生成一颗最短路径树,树的根为起始顶点s, 树的分支为从顶点s到图G中所有其他顶点的最短路径。此算法要求图中的所有权值均为非负数。与Prim算法类似,Dijkstra算法也采用贪心算法,它总是将当前看起来最近的最短的边加入最短路径中。

从根本上来说,Dijkstra算法通过选择一个顶点,并不断探测与之相关的边,类似广度优先搜索,找出当前距离最近的点。

结合下图简要的说一下算法运行过程:


1. 求从顶点`a`开始的单源最短路径,就是图中每个点距离`a`的最短路。
2. 选定`a`,标记访问过了,首先初始化图中各点与`a`的距离,在实际代码中一般用一个数组`dist[i]`存放这个值,如果暂时不可达,存一个极大值在里面。如图,只有`b`,`c` 直接与`a`连接,这时候`dist[b]=8`,`dist[c]=4`。其它点的`dist[i]=NaN,`后面的运算就是不断更新这个`dist`数组。
3. 再选出`dist`最小的元素扩展,很明显是`c`,标记`visit`,这时候通过`c`点,`f`,`e`也产生一个新的与`a`的距离,这时候更新`dist`数组,他们之前与a的距离都是`NaN`,当然只要原来与`a`的距离大于通过`c`与`a`的距离,都需要更新。
4. 再找出非`visit`中`dist`最小的点,找到`f`,因为`b, d, e`都与`f`相邻,这时候比较通过`f`后与`a`的距离,如果比原来`dist`短,就更新`dist`。
5. 选择顶点`b`。
6. 在选择顶点`d, e`后形成最短路径。

Dijkstra算法代码实现流程大概如下:

 1  function Dijkstra(Graph, source):
 2
 3      create vertex set Q
 4
 5      for each vertex v in Graph:             // Initialization
 6          dist[v] ← INFINITY                  // Unknown distance from source to v
 7          prev[v] ← UNDEFINED                 // Previous node in optimal path from source
 8          add v to Q                          // All nodes initially in Q (unvisited nodes)
 9
10      dist[source] ← 0                        // Distance from source to source
11      
12      while Q is not empty:
13          u ← vertex in Q with min dist[u]    // Source node will be selected first
14          remove u from Q 
15          
16          for each neighbor v of u:           // where v is still in Q.
17              alt ← dist[u] + length(u, v)
18              if alt < dist[v]:               // A shorter path to v has been found
19                  dist[v] ← alt 
20                  prev[v] ← u 
21
22      return dist[], prev[]

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容