推荐系统召回算法之——图模型(Personal Rank)

目录

1、Personal Rank 算法背景

2、二分图的概念

3、文件解析原理及其物理意义

4、PR公式推导

5、python实现

6、总结


Personal Rank算法背景:

用户行为很容易表示为图

图推荐在个性化推荐领域效果显著,UI矩阵就是典型的二分图。


二分图:又称为二部图,是图论中的一种特殊模型。设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,i in B),则称图G为一个二分图。


下面举例并从物理意义角度解析,二分图算法是如何将UI矩阵表示为二分图,计算出Item集合对固定user的重要程度排序?

UI矩阵的二分图表示法

1、两个顶点之间连通的路径数?

A到c:A->a->B->c;A->d->D->c两条连通路径;

A到e:A->b->C->e一条连通路径

故,A对物品c的偏好程度大于对物品e的偏好。

2、两个顶点之间的连通路径长度?

A->c两条路径4个顶点,连通路径长度都是3;A->e也为3

3、两个顶点之间连通路径经过顶点的初度?

A到c:A->a->B->c:3+2+2+2;A->d->D->c:3+2+2+2

A到e:A->b->C->e:3+2+2+1

可见,PR算法是将UI矩阵表示为二分图存储后,通过统计两顶点连通路径长度、连通路径数以及顶点初度信息来计算Item集合每个Item对固定user的重要程度的一种算法。


算法文字描述:对用户A进行个性化推荐,从用户A结点开始在用户物品二分图random walk ,以alpha的概率从A的出边中等概率选择一条游走过去,到达顶点后(例如a),有alpha的概率继续从顶点a的出边中等概率选择一条继续游走到下一个结点,或者(1-alpha)的概率回到起点A,多次迭代。直到所有的顶点对于用户A的重要度收敛。(二分图有且只有一个顶点)

算法公式推导

PR公式(1)

按照上面UI矩阵的二分图表示法结合算法文字描述,以节点A和a来举例解释公式。

PR(v):表示不同节点重要度。

以a为例,公式上部分表示节点a与之相连的节点A和B,分别从各自出边等概率贡献了1/3和1/2的重要度加和后乘以\alpha \alpha 取经值为0-1之间(经验值0.6)。

以A为例,公式下部分表示与A相连的节点a,b,d,分别从各自的出边等概率贡献了1/2的重要度,同时它们又是直接与A相连的节点,从PR算法文字描述可知,都可以以1-\alpha 的概率回到A节点。

公式(1)的矩阵表达方式为:r = (1-\alpha )r_{0}+\alpha M^T r (2)

其中r是n维向量,每一个元素代表一个节点的PR重要度;r_{0} 也是n维向量,第i个位置为1,其余位置为0,我们就是要为第i个节点进行推荐。其中M是n阶转移矩阵:

M_{ij} =  \frac{1}{\vert out(i) \vert }   if (j\in out(i)) else 0

由(2)进行恒等变形可得

(E-\alpha M^T  )r =(1-\alpha ) r_{0} (3)

r = (E-\alpha M^T  )^ -1 (1-\alpha )r_{0} (4) ,其中(E-\alpha M^T  )^-1就是所有节点的推荐结果,乘以r_{0} 就是取出矩阵的第i列。


Python实现:https://github.com/SolodanceMagicq/RecommendSys/tree/master/PersonalRank


总结:

1、personalrank二分图算法,是一种无向图,有且只有一个root顶点。

2、算法核心思想是将UI矩阵以二分图存储,通过顶点按等概率随机游走,迭代计算关联节点pr值的过程。首次迭代只计算推荐用户(root顶点)与其直接关联的节点pr值,然后每次基于上次节点进一步迭代计算关联节点,直至收敛。

3、PersonalRank算法迭代的时间复杂度过高,须进一步优化,工业界一般会借助spark离线计算或mapreduce将多节点并行计算提高计算性能。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342