神经网络-BP神经网络

原文地址:神经网络-BP神经网络


感知器作为初代神经网络,具有简单、计算量小等优点,但只能解决线性问题。BP神经网络在感知器的基础上,增加了隐藏层,通过任意复杂的模式分类能力和优良的多维函数映射能力,解决了异或等感知器不能解决的问题,并且BP神经网络也是CNN等复杂神经网络等思想根源。

1、基本概念

BP神经网络是一种通过误差反向传播算法进行误差校正的多层前馈神经网络,其最核心的特点就是:信号是前向传播,而误差是反向传播。前向传播过程中,输入信号经由输入层、隐藏层逐层处理,到输出层时,如果结果未到达期望要求,则进入反向传播过程,将误差信号原路返回,修改各层权重。

2、BP神经网络结构

BP神经网络包含输入层、隐藏层和输出层,其中,隐藏层可有多个,其中,输入层和输出层的节点个数是固定的(分别是输入样本的变量个数和输出标签个数),但隐藏层的节点个数不固定。以具有单隐藏层的BP神经网络为例,其网络结构如下图:

3、BP神经网络原理公式

以单隐藏层的BP神经网络为例,各阶段原理公式如下:

前向传播。设输入层有n个节点,隐藏层有q个节点,输出层有m个节点,输入层与隐藏层间的权重为V,隐藏层与输出层的节点为W,输入变量为X,则隐藏层和输出层的输出分别为:

误差函数。设有p个输入样本,则每个输入样本的误差函数为:

根据误差调整权重。函数是沿梯度的方向变化最快,BP神经网络中也是通过梯度下降法更新权重。根据链式法则及上述关系,可以得到权重W和V的变化公式分别为:

4、python代码实现

这里,我们用手写数字图片建立一个仅有1层隐藏层的BP神经网络,并进行训练及预测。每张图片大小为8*8,因此有64个图片像素变量及1个偏置项,共65个输入层节点;训练目标是将手写图片判断为0-9,因此有10个输出层节点;隐藏层节点数这里设置为100。图片示例如下:

另外,这里两个激活函数我们都选用sigmoid函数,且这个函数都导数有一个特点,即f′(x)=f(x)(1−f(x))。

step 1:导入相应模块及定义sigmoid、dsigmoid函数

step 2:建立BP神经网络模型

初始过程中,给定两个权重V和W的初始值。训练过程中,首先给数据增加偏置项,然后每次训练时,随机选择一个样本,计算隐藏层和输出层的输出,并对W,V进行更新,同时每训练10000次计算一下预测准确率。

step 3:结果计算

导入数据时,对输入数据进行归一化处理,不然sigmoid求导结果接近于0,权值的改变也将接近0,无法学习。

输出结果如下,可以看到随着训练次数提升,模型准确率稳定在0.95、0.96。

相关推荐:

神经网络-感知器

神经网络-感知器(二):Python代码实现

线性神经网络及学习规则

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容