Pytorch 小知识点

Contents

  • Should I manually set model mode to train() or eval()?
  • Dropout behaves different in train and test mode ?
  • BatchNorm behaves different in train and test mode?
  • Set accessible GPUs your code can run on
  • Get one batch from DataLoader
  • What does pytorch detach() do?

Should I manually set model mode to train() or eval()?

  • By default , in pytorch, all the modules are initialized to train mode (self.training = True). You can set the model in train mode by manually call model.train(), but it is an optional operation.
  • Also be aware that some layers have different behavior during train and evaluation (like BatchNorm, Dropout) so setting it matters.
  • As a rule of thumb for programming in general, try to explicitly state your intent and set model.train() and model.eval() when necessary.

Dropout behaves different in train and test mode ?

Dropout layer is defined in torch.nn module and is used in the training phase to reduce the chance of overfitting. However, when we apply our trained model, we want to use the full power of the model, i.e. to use all neurons (no element is masked) in the trained model to obtain a higher accuracy.

  • During training, Dropout randomly zeroes some of the elements of the input tensor with a pre-defined probability p using samples from a Bernoulli distribution. The elements to zero are randomized on every forward call.
  • During training, the outputs are scaled by a factor of \frac{1}{1-p}.
  • During evaluation, the module simply computes an identity function.

BatchNorm behaves different in train and test mode?

According to torch.nn.BatchNorm2d interpretation in pytorch doc:

  • By default, during training this layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default momentum of 0.1.
  • If track_running_stats is set to False, this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well.

Let's have a look at the BatchNorm2d module:

class torch.nn.BatchNorm2d(
num_features, 
eps=1e-05, 
momentum=0.1, 
affine=True, 
track_running_stats=True)

It is very clear that the track_running_stats is set True. So BatchNorm2d will keep a running estimate of its computed mean and variance and, moreover, the running mean/variance is used for normalization during evaluation.

Set accessible GPUs your code can run on

It is common that one machine can have 2 or more GPU cards installed and a group people share the limited resource. For example, your machine has 2 1080Ti and your colleague is running his code on the first GPU indexed by gpu:0. He almost used out the GPU memory, so you cannot launch your code on the same device because it will throw a Out of memory error.

However, you are absolutely the one who comes across the Out of memory error if you directly run your code without any specific setting, let's say model.cuda(). That's due to the default setting. Let's make it more clear, in pytorch, it always uses the first device (index=0) .

So how can we get around this problem? Here is the solution:
Solution One: explicitly change the device.

x = torch.Tensor([1,2,3]).cuda() # or
x = torch.Tensor([1,2,3], device=torch.device("cuda")) # or
x = torch.Tensor([1,2,3]).cuda(torch.device("cuda")) # or
x = torch.Tensor([1,2,3]).to(device=torch.device("cuda"))
# x.device is device(type="cuda", index=0), the default one in the context

with torch.cuda.device(1):
    x = torch.Tensor([1,2,3]).cuda() # or
    x = torch.Tensor([1,2,3], device=torch.device("cuda")) # or
    x = torch.Tensor([1,2,3]).cuda(torch.device("cuda")) # or
    x = torch.Tensor([1,2,3]).to(device=torch.device("cuda"))
    # x.device is device(type="cuda", index=1), the default one in the context

    x = torch.Tensor([1,2,3], device=torch.device("cuda:0")) # or
    x = torch.Tensor([1,2,3]).cuda(torch.device("cuda:0")) # or
    x = torch.Tensor([1,2,3]).to(device=torch.device("cuda:0"))
    # x.device is device(type="cuda", index=0), regardless the context

Note that the device context indicates the default device to use, but you can go out of the bounds by explicitly using other device, e.g. cuda:1.

Solution Two: use CUDA_DEVICE_ORDER & CUDA_VISIBLE_DEVICES env variable.
See: CUDA_DEVICE_ORDER 环境变量说明 and CUDA_VISIBLE_DEVICES 环境变量说明
for more information.

import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"   
os.environ["CUDA_VISIBLE_DEVICES"]="1"

x = torch.Tensor([1,2,3]).cuda() # or
x = torch.Tensor([1,2,3], device=torch.device("cuda")) # or
x = torch.Tensor([1,2,3]).cuda(torch.device("cuda")) # or
x = torch.Tensor([1,2,3]).to(device=torch.device("cuda"))
# x.device is device(type="cuda", index=1), the default one in the context

Why CUDA_VISIBLE_DEVICES not working in PyTorch code?

Even strictly following the introduction aforementioned, sometimes you might run into the situation in which CUDA_VISIBLE_DEVICES env does not work as expected, say we got 4 GPU installed on a machine, and we want to run our code on the 3rd GPU by setting CUDA_VISIBLE_DEVICES =2 :

import os
...
...
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="2"
...
...

However, the code run on the 1st GPU all the time. The strange thing is everything works well when CUDA_DEVICE_ORDER and CUDA_DEVICE_ORDER env are set ahead, e.g.

CUDA_DEVICE_ORDER= PCI_BUS_ID, CUDA_VISIBLE_DEVICES=2 python code.py

If this is your situation, check and make sure os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" and
os.environ["CUDA_VISIBLE_DEVICES"]="2" are set before you call torch.cuda.is_available() or torch.Tensor.cuda() or any other PyTorch built-in cuda function.

Never call cuda relevant functions when CUDA_DEVICE_ORDER &CUDA_VISIBLE_DEVICES is not set.

Get one batch from DataLoader

We usually construct a data loader and then enumerate it to retrieve data one batch after another.

for step, item in enumerate(dataloader):
    ## data consume

What if we want to get only one batch of data out of the data loader? DataLoader intrinsically does not support indexing, which means dataload[0] fails to pull a batch of data. We can do that with the following code:

dataloaderI = iter(dataloader)
item = next(dataloaderI)

That's it.

What does pytorch detach() do?

Dataloader will automatically convert data of type numpy.ndarray to torch.Tensor

DistributedDataParallel vs DataParallel

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,283评论 0 10
  • 摘要:火药是中国古代的四大发明之一,起源于方士的炼丹术,最晚到唐代已经开始出现。自火药出现后,由于其巨大的杀伤力,...
    浩然文史阅读 1,246评论 5 3
  • 昨天做了工作交接,上午税务局的来参观,我和婕在交接,另外两个人在坐着,鄢厂进来吼了一句,没一个人下去接待???然,...
    无尽夏小柒阅读 158评论 0 0
  • 到现在那个画面依然会浮现在我眼前,因为它美的有点深刻。 昨晚我和阿强还有林一起上晚班,下班后林独自乘公交离开,我和...
    呼吸到他存在阅读 394评论 0 0
  • 但凡是有点才华之人无论是艺术上的还是文学上的必将拥有情怀,也可以简而概括为性情中人,就像我昨日在朋友圈里忽然写...
    Aedi阅读 273评论 0 0