作者:Johannes Heinrich J.HEINRICH@CS.UCL.AC.UK
David Silver D.SILVER@CS.UCL.AC.UK
University College London, UK
摘要:
Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior
work has focused on computing Nash equilibria in a handcrafted abstraction of the domain.
In this paper we introduce the first scalable end-to-end approach to learning approximate Nash equilibria without any prior knowledge. Our method combines fictitious self-play with deep reinforcement learning. When applied to Leduc poker, Neural Fictitious Self-Play (NFSP) approached a Nash equilibrium, whereas common reinforcement learning methods diverged. In Limit Texas Hold’em, a poker game of real world scale, NFSP learnt a competitive strategy
that approached the performance of human experts and state-of-the-art methods.
Deep Reinforcement Learning from Self-Play in Imperfect-Information Games
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...