对象内存布局,生命周期

内存布局

布局

对象头:标记字(32位虚拟机4B,64位虚拟机8B) + 类型指针(32位虚拟机4B,64位虚拟机8B)+ [数组长(对于数组对象才需要此部分信息)]
实例数据
对齐填充:对于64位虚拟机来说,对象大小必须是8B的整数倍,不够的话需要占位填充

布局.png

  • 对象头用于存储对象的元数据信息:
    Mark Word 部分数据的长度在32位和64位虚拟机(未开启压缩指针)中分别为32bit和64bit,存储对象自身的运行时数据如哈希值等。Mark Word一般被设计为非固定的数据结构,以便存储更多的数据信息和复用自己的存储空间。
    类型指针 指向它的类元数据的指针,用于判断对象属于哪个类的实例。
  • 实例数据存储的是真正有效数据,如各种字段内容,各字段的分配策略为longs/doubles、ints、shorts/chars、bytes/boolean、oops(ordinary object pointers),相同宽度的字段总是被分配到一起,便于之后取数据。父类定义的变量会出现在子类定义的变量的前面。
  • 对齐填充部分仅仅起到占位符的作用,并非必须。

示例(以HashMap<Long,Long>为例):
其只有Key和Value是有效数据,共28B=16B,包装成Long对象后分别具有了8B标记字和8B的类型指针,共24B2=48B;两个对象组成Map.Entry后多了16B对象头、一个8B的next字段、4B的int类型的hash字段,还必须添加4B的空白填充。共32B;最后还有对HashMap中对此Entry的8B的引用。所以空间利用率为 16B / (48B+32B+8B) ≈ 18%

对象的访问定位

对象的访问定位也取决于具体的虚拟机实现。当我们在堆上创建一个对象实例后,就要通过虚拟机栈中的reference类型数据来操作堆上的对象。现在主流的访问方式有两种(HotSpot虚拟机采用的是第二种):

  1. 使用句柄访问对象。即reference中存储的是对象句柄的地址,而句柄中包含了对象实例数据与类型数据的具体地址信息,相当于二级指针。
  2. 直接指针访问对象。即reference中存储的就是对象地址,相当于一级指针。

两种方式有各自的优缺点。当垃圾回收移动对象时,对于方式一而言,reference中存储的地址是稳定的地址,不需要修改,仅需要修改对象句柄的地址;而对于方式二,则需要修改reference中存储的地址。从访问效率上看,方式二优于方式一,因为方式二只进行了一次指针定位,节省了时间开销,而这也是HotSpot采用的实现方式。下图是句柄访问与指针访问的示意图。


访问

生命周期

对象是否存活

  1. 引用计数器:给对象添加一个引用计数器,每当有一个地方引用他时,计数器值就加一,当引用失效时,计数器值就减一。任何时刻计数器为零的对象就是不可在被使用的。
    分析:客观的说,引用计数器算法(Reference Counting)的实现简单,判定效率很高,在大部分情况下,都是一个不错的算法。但是,主流的Java 虚拟机里面没有选用引用计数算法来管理内存,其中最主要的原因是他很难解决u对象之间相互循环引用的问题。例如:objA.instance = objB;及 objB.instance = objA;除此之外两个对象再无其他引用,实际上这两个对象已经不可能再被访问,但是他们因为互相引用着对方,导致他们的引用计数都不为零,于是引用计数算法无法通知GC收集器回收他们。
  2. 可达性分析算法
    在主流的商用程序语言(Java , C# 等)的主流实现中都是使用可达性分析(Reachability Analysis)来判定对象是否是存活的。
    基本思想:通过一系列称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots 没有任何引用链相连(用图论的话来说就是从GC Roots 到这个对象不可达)时,则证明此对象是不可引用的。
       在Java 语言中,可作为GC Roots的对象包括下面几种:
        a.虚拟机栈(栈帧中的本地变量表)中引用的对象
        b.方法区中类静态属性引用的对象
        c.方法区中常量引用的对象
        d.本地方法栈中JIT(即一般说的Native方法)引用的对象
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容