协同过滤科普(4)

协同过滤的分类

当得到指定用户或者内容的邻居后,我们就可以利用这些数据信息为用户进行详细的推荐了。前面提到过,协同过滤算法可以分成三类:基于用户的协同过滤,基于内容项的协同过滤和基于模型的协同过滤。

1.基于用户的协同过滤

基于用户的协同过滤(User-based CF)是最早被提出来的算法,是根据用户对不同内容的喜好程度找到他的邻居用户,然后将这些邻居喜欢的内容排序推荐给指定用户。具体流程是首先利用相似矩阵的行向量,即代表每个用户对所有内容的喜好程度,来计算得出每个用户间的相似度,然后根据相似性结果找出K个最近的邻居用户,再根据邻居的相似性程度对他们进行加权,利用权重和他们对内容的喜好程度,预测指定用户可能也会喜好的内容,最终得出一个经过排序的内容列表作为该指定用户的推荐。Fig 5给出了一个实例,将用户A作为指定用户,根据他的用户行为,系统可以得出他对不同内容项的喜好程度,利用这些信息找到他的邻居,示例中用户C即为用户A的邻居用户,所以将用户C喜好的内容D推荐给用户A。

Fig 5.png

基于用户的协同过滤适用于一些新闻,微博或其他媒体的推荐系统,因为对于这些推荐系统来说,内容项的数量是远远多于用户的数量,而且内容更新很快,所以与计算内容项间的相似性相比,我们计算用户间的相似性可以大大地减小计算量。

2.基于内容项的协同过滤

基于内容项的协同过滤(Item-based CF),它与基于用户的协同过滤区别主要在于,它是通过计算内容项之间的相似性,而非计算用户间的相似性来得到指定用户的推荐列表。具体步骤为首先利用相似矩阵的列向量,即代表所有用户对内容项的喜好程度,来计算得出内容项间的相似度,然后利用指定用户的历史喜好信息,得出一个排序的相似内容项列表作为推荐预测。Fig 6也给出了一个示例,根据所有用户的喜好记录,喜欢内容B的用户大部分也喜欢内容D,也就是说内容B的邻居是内容D,而指定用户A喜欢内容B,所以根据基于内容项的协同过滤,我们可以预测用户A也应该会喜欢内容D。

Fig 6.png

基于内容项的协同过滤适用于电子商务网站,如淘宝,京东,当当网等。因为这些网站的用户数量是海量的,而商品内容的数据相对比较稳定,因此计算内容项间的相似性可以减小计算量,也不需要频繁地进行更新。

3.基于模型的协同过滤

基于模型的协同过滤(Model-based CF)是目前较为流行的协同过滤类型,它的思想和前面两个类型有较大的区别。基于用户的协同过滤和基于内容项的协同过滤都属于基于记忆(Memory based)的协同过滤算法,它们难以处理大量的数据集,所以不适用于一些对时效性要求高的应用。而基于模型的协同过滤可以胜任该任务,它可以利用用户和喜好内容间的历史数据,预测出用户和未知内容之间的喜好关系,最后找出喜好程度最高的内容推荐给指定用户。基于模型的协同过滤主要利用了机器学习的方法,对样本的用户喜好数据进行建模,并将训练好的模型来预测未知的用户喜好信息,最终得出推荐。它的复杂度一般较高,因为对模型进行训练和评估需要花费大量的时间和精力。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容

  • 欢迎关注【机器学习之路】公众号 1。http://www.voidcn.com/blog/u013713010/a...
    大海一滴写字的地方阅读 4,657评论 0 16
  • 什么是协同过滤 协同过滤推荐(Collaborative Filtering recommendation)是在信...
    小灰灰besty阅读 34,131评论 7 51
  • 协同过滤的实现 我们弄清楚协同过滤是什么之后,再来讨论下协同过滤是怎么实现的。 协同过滤主要有三个步骤,首先是获取...
    数据挖掘机长阅读 658评论 0 4
  • 概述及标签体系搭建 1 概述 随着信息技术的迅速发展和信息内容的日益增长,“信息过载”问题愈来愈严重,愈发带来很大...
    JinkeyAI阅读 22,747评论 10 241
  • 我刚读这本书的时候,我以为只是个纪实,我没以为会让我印象如此深刻。 我对于战争真正的残酷的了解是从这本书开始。 我...
    温柔的V阅读 302评论 0 1