R语言基础-3
创建test
test <- iris[c(1:2,51:52,101:102),]
关于dplyr的五个基础函数
- mutant()
> mutate(test,new = Sepal.Length * Sepal.Width)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species new
1 5.1 3.5 1.4 0.2 setosa 17.85
2 4.9 3.0 1.4 0.2 setosa 14.70
3 7.0 3.2 4.7 1.4 versicolor 22.40
4 6.4 3.2 4.5 1.5 versicolor 20.48
5 6.3 3.3 6.0 2.5 virginica 20.79
6 5.8 2.7 5.1 1.9 virginica 15.66
- select()
> select(test,1)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
> select(test,c(1,5))
Sepal.Length Species
1 5.1 setosa
2 4.9 setosa
51 7.0 versicolor
52 6.4 versicolor
101 6.3 virginica
102 5.8 virginica
> select(test, Sepal.Length)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
> select(test, Petal.Length,Petal.Width)
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
51 4.7 1.4
52 4.5 1.5
101 6.0 2.5
102 5.1 1.9
> vars <- c('Petal.Length', 'Petal.Width')
> select(test, one_of(vars))
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
51 4.7 1.4
52 4.5 1.5
101 6.0 2.5
102 5.1 1.9
- filter()
> filter(test, Species == "setosa")
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
> filter(test, Species == "setosa" & Sepal.Length >5)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
> filter(test, Species %in% c("setosa", "versicolor"))
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 7.0 3.2 4.7 1.4
4 6.4 3.2 4.5 1.5
Species
1 setosa
2 setosa
3 versicolor
4 versicolor
- arrange()
> arrange(test, Sepal.Length)
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 4.9 3.0 1.4 0.2
2 5.1 3.5 1.4 0.2
3 5.8 2.7 5.1 1.9
4 6.3 3.3 6.0 2.5
5 6.4 3.2 4.5 1.5
6 7.0 3.2 4.7 1.4
Species
1 setosa
2 setosa
3 virginica
4 virginica
5 versicolor
6 versicolor
> arrange(test,desc(Sepal.Length))
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 7.0 3.2 4.7 1.4
2 6.4 3.2 4.5 1.5
3 6.3 3.3 6.0 2.5
4 5.8 2.7 5.1 1.9
5 5.1 3.5 1.4 0.2
6 4.9 3.0 1.4 0.2
Species
1 versicolor
2 versicolor
3 virginica
4 virginica
5 setosa
6 setosa
(5)summarise()
> summarise(test, mean(Sepal.Length), sd(Sepal.Length))
mean(Sepal.Length) sd(Sepal.Length)
1 5.916667 0.8084965
> group_by(test,Species)
# A tibble: 6 x 5
# Groups: Species [3]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
* <dbl> <dbl> <dbl> <dbl> <fct>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa
3 7 3.2 4.7 1.4 versicolor
4 6.4 3.2 4.5 1.5 versicolor
5 6.3 3.3 6 2.5 virginica
6 5.8 2.7 5.1 1.9 virginica
> summarise(group_by(test, Species), mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
Species `mean(Sepal.Length)` `sd(Sepal.Length)`
<fct> <dbl> <dbl>
1 setosa 5 0.141
2 versicolor 6.7 0.424
3 virginica 6.05 0.354
关于dplyr的两个实用技能
- 管道操作 %>% (cmd/ctr + shift + M)
> test %>%
+ group_by(Species) %>%
+ summarise(mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
Species `mean(Sepal.Length)` `sd(Sepal.Length)`
<fct> <dbl> <dbl>
1 setosa 5 0.141
2 versicolor 6.7 0.424
3 virginica 6.05 0.354
- count统计某列的unique值
> count(test,Species)
# A tibble: 3 x 2
Species n
<fct> <int>
1 setosa 2
2 versicolor 2
3 virginica 2
dplyr处理关系数据
已知test1, test2
> test1 <- data.frame(x = c('b','e','f','x'),z= c('A','B','C','D'), stringsAsFactors = F)
> test1
x z
1 b A
2 e B
3 f C
4 x D
> test2 <- data.frame(x = c('a','b','c','d','e','f'),y=c(1,2,3,4,5,6), stringsAsFactors = F)
> test2
x y
1 a 1
2 b 2
3 c 3
4 d 4
5 e 5
6 f 6
1.inner_join() #取交集
> inner_join(test1, test2, by ='x')
x z y
1 b A 2
2 e B 5
3 f C 6
- left_join()
> left_join(test1,test2,by='x')
x z y
1 b A 2
2 e B 5
3 f C 6
4 x D NA
> left_join(test2, test1, by ='x')
x y z
1 a 1 <NA>
2 b 2 A
3 c 3 <NA>
4 d 4 <NA>
5 e 5 B
6 f 6 C
- full_join()
> full_join(test1, test2, by = "x")
x z y
1 b A 2
2 e B 5
3 f C 6
4 x D NA
5 a <NA> 1
6 c <NA> 3
7 d <NA> 4
4.semi_join()
> semi_join(x= test1,y=test2, by = 'x')
x z
1 b A
2 e B
3 f C
- anti_join()
> anti_join(x=test2, y=test1, by = 'x')
x y
1 a 1
2 c 3
3 d 4
- bind_rows(), bind_cols()
> test1 <- data.frame(x=c(1,2,3,4), y = c(10,20,30,40))
> test1
x y
1 1 10
2 2 20
3 3 30
4 4 40
> test2 <- data.frame(x=c(5,6),y =c(50,60))
> test2
x y
1 5 50
2 6 60
> test3 <- data.frame(z =c(100,200,300,400) )
> test3
z
1 100
2 200
3 300
4 400
> bind_rows(test1,test2)
x y
1 1 10
2 2 20
3 3 30
4 4 40
5 5 50
6 6 60
> bind_cols(test1,test3)
x y z
1 1 10 100
2 2 20 200
3 3 30 300
4 4 40 400