給舞者的 SWING 樂理:節奏練習 #1

转载

http://www.kissntellvintage.com/chineseblog/2017/2/22/-swing-1

FEBRUARY 22, 2017 IN SWING

因為上課的時候常常不停地提到一樣的樂理所以一次整理出來給大家參考(包括一些練習題)。這系列的文章提到的所有歌曲都在這個 Kiss & Tell Authentic Jazz 歌單上面,用 Spotify 可以免費聽。歌單上面的歌已經用速度排好了,越來越快,方便你練習的時候加快速度挑戰自己。未來有機會我可能可以在拍些搭配的練習影片,補充現有教學影片的這個不足。每天只要練個一兩首歌一不小心就會變厲害囉~!

正拍與反拍

"Swing" 或是 "搖擺" 不是一種舞,它是一種音樂,更精準的來說,它是一種節奏。想要練習節奏感的話,我建議先用拍手來練習。拍手都 ok 的話可以用踏步或是踢或是跳或是身體的任何其他舉動來取代,就會成為你自己的動作。

將 Swing 歌曲數字化的時候,樂手們習慣一個小節算到 4,跳 Swing 的舞者們則是算到 8,因為我們比較厲害(誤)。

整數拍子之間的距離是固定的,也就是所謂的 BPM("beats per minute",每分鐘內幾拍),而 BPM 也就是一首歌的速度。對 Lindy 舞者而言,可以非常粗略的說 100 BPM 以下是慢歌,100 左右是中等速度,然後越接近 200 就會越喘,超過 200 就會有人說「這首太快了我們跳下一首好不好?」,不過一首歌用來跳舞會不會太快太慢當然是個人主觀意見。想知道一首歌的 BPM 可以用 Tap That Tempo 這個 APP 來算,只要在手機面板跟著歌打拍子就行了。以我個人經驗自動計算 BPM 的軟體都不太準,所以我都是用這個手動方式。

現在我們可以開始做一些節奏習題~

最簡單的起始點就是抓所有的拍子,拍:

1 2 3 4 5 6 7 8

然後所有單數,拍:

1 3 5 7

在接下來就是要抓所有的雙數,拍:

2 4 6 8

然後就可以在整數之間玩各種變化,比方說:

1 2 3 6 8

1 4 7

2 3 5 8

如此類推~

現在你可以自己用 1 - 8 這 8 個拍子組成你想要練習的節奏,對著任何一首歌單裡的歌曲拍手練習。你應該會發現有些歌比較困難(快歌,或是拍子比較不明顯的歌曲),不過只要有練就會有進步。

*話說:在這個 1 - 8 拍這個框架之下總共會有  2 x 2 x 2 x 2 x  2 x 2 x 2 x 2 個不同的組合。為什麼是 2^8 個組合呢?假設我們今天只有兩個拍子,1 與 2,那我們可能有的組合只有四種 1, 2, 1 2, 還有完全不拍手,所以計算方法是 2 x 2,因為我們只有兩拍,而每個拍子的可能性是兩個,拍或不拍,所以當我們有 8 拍的時候可能性的總數就是 2^8,所以節奏基本上是二次元的數學。不過知道這個對你的節奏感一點幫助也沒有,所以這這段的內容你也可以完全忽略掉。

有關整數拍子,你必須知道的是:

英文 Swing 界基本上把所有單數歸納為 On/Down Beat(中文通常說「正拍」),所有的雙數歸納為 Off/Up Beat(「反拍」)。

在 Swing 這類型的歌曲中,重拍在雙數拍子上面,所以大家在打節奏的時候一定會拍 2、4、6、8 如此循環。拍成 1、3、5、7 會遭人白眼。

看一下 Duke Ellington 的示範:

現代樂手 Harry Connick Jr. 遇到這個問題時直接多塞進一拍,把觀眾從正拍移植到反拍(天衣無縫,鼓手在後面舉起雙手樂了一下):

Swing 界即興的 jam circle 的時候觀眾都是拍反拍(影片來自 Snowball,可以參考 Snowball 活動分享):

所以作為初學者的話第一步就是需要能夠隨意抓到整數拍子,特別是所有的反拍。

不確定你抓到的是反拍嗎?那你可以跟著這個影片的觀眾一起。他們打拍子都是打反拍:

除此之外,歌單中〈Shout Sister Shout〉也有在反拍上拍手,〈Sermonette〉一開始也有,〈Clap Your Hands on the After Beat〉則是叫你一定要打在反拍上,並且在歌中一直打反拍,然後突然換成打一下正拍做為錯誤示範,所以你可以聽聽看聽不聽得出來哪段是拍反拍那段是拍正拍。

另外,雖然雙人舞的動作都是從 1 開始,但是單人舞則是常常從 8 開始,所以抓 8 也是需要練習的。

*請不要以為你只想學雙人舞所以抓不抓得到 8 以及其他反拍不重要。只要你想要跳舞就需要訓練你的節奏感,做不做得到跟需不需要是兩回事。做不到的話,你會永遠無法脫離初中級,所以不如儘早開始打下節奏感的基礎!

Swing 的精髓

練習完了所有的整數之後可以練習兩個整數之間的拍子了:這個拍子有時稱之 "and" 拍,有時稱之 "a" 拍(英文發音像是中文的「呃」),在我的文中會固定用 + 這個符號去代表,但是念的時候要念 "and" 或是 "a" 其實都 ok,重要的是,這個拍子的位置是 Swing 這種節奏感的精髓。

剛剛說過整數拍之間的距離是固定的,現在我們在整數拍之中插入一個 + 拍。這樣我們就有第一個整數拍與 + 之間的距離(稱為 X),還有 + 與第二個整數拍之間的距離(稱為 Y)。如果說 X = Y 的話,那這個節奏就沒有 "swing"(英文會稱之為 "straight")。要有 "swing" 的話,規則就是 X > Y。換句話說,在兩個整數拍之間,+ 會距離後面的那拍比較近。至於 X 以及 Y 的比例是多少,沒有絕對的答案,而是每個樂團在詮釋音樂的時候會自己去協調。

所以一般我們上課或是跳舞時用的音樂就是有這種 X > Y 特性的 Swing 歌曲。因為 + 的位置在各首歌曲之間是不同的所以我們需要透過聆聽以及練習來抓到每首歌的 + 拍在哪裡。

現在可以開始練習這類的節奏:

1 2 3 +4 5 6 7 +8

如果有學過雙人舞的話大概會認出來這個是 Lindy Hop 基本舞步的節奏,1 2 以及 5 6 就是你的 "step step" 然後 3 +4 以及 7 +8 就是你的 "triple step"。

接下來可以嘗試:

1 +2 3 4 5 +6 7 8

1 +2 3 +4 5 +6 7 +8

這些都可以的話就試試看比較急促的:

+1 +2 +3 +4 +5 +6 +7 +8

會發現是兩個黏在一起的音,不停出現。

然後可以試試看爵士鼓手常常打的這個節奏:

+1 2 +3 4 +5 6 +7 8

在 Ella Fitzgerald 的〈Smooth Sailing�〉這首歌的前奏就很清楚的可以聽到這個節奏。

當你有了整數拍以及 + 拍之後你也可以替自己設計很多不同的節奏來練習,比方說:

1 2 +3 4 5 +6 +7 +8

1 +2 3 4 5 +6 7 8

如此類推,你現在有 2^16 = 65,536 不同的可能性(因為現在每個整數拍多出了一個 + 拍,所以從 8 變成 16 個可以拍或不拍的選擇~ 仍然是二次元數學題)。

不過你可能會發現這些可能性之中有些比較簡單有些比較困難⋯⋯

還記得我們剛剛說過當我們有雙數與單數的時候,單數為正拍,雙數為反拍,然後抓反拍通常比抓正拍困難嗎?現在我們有了整數拍以及它們之間的各個 + 拍,就可以進一步的把所有的整數拍都歸類為正拍,所有的 + 拍都歸類為反拍,如此類推之後就會發現抓 + 會比抓整數困難。

+ 拍出現的時候有幾種可能:

夾在兩個整數之間,比方說 2 +3,這種的挑戰性比較低

出現在一個整數拍之前,比方說 +3,這種挑戰性也低

出現在一個整數拍之後,比方說 3 +,這種挑戰性比較高

前後都沒有正拍,比方說你的節奏要你拍 (1) +(2) +3 4 5,但是被圈起來的 1 以及 2 不准拍,這種也比較有挑戰性

可是我不知道我拍的是哪拍誒~

要怎麼知道你拍得對不對呢?一個方法是抓音樂中你確定的拍子作為基礎,跟它們核對,比方說上面列了很多在雙數拍上面拍手的歌曲,用這些歌練習雖然不能絕對的知道哪拍是那拍但是至少可以分出正拍與反拍。

除此之外還有剛剛說過的 +1 2 +3 4 +5 6 +7 8 這個鼓手常打的節奏,也可以作為練習的輔助。比方說嘗試看看你能不能一面聽著〈Smooth Sailing〉一面跟著鼓手打出一樣的節奏。如果可以的話,你可以挑戰自己,把這個節奏的雙數與單數調換過來,變成 1 +2 3 +4 5 +6 7 +8,所以跟著歌的時候,當鼓手打 + 的時候正好是你不打的時候(腦漿流出來了嗎?)。

要知道你做的節奏是否正確,最好的方法就是在週一 Drop-In 課程的時候提出問題,或是週四的時候來參加練習團。這些時候你有什麼不確定的節奏我們都可以一起試試看 ^-^

Swing 樂理的節奏練習第一部大概就這樣子。下次有空的話我再分享一些比較進階內容,比方說搶拍、三連音、四連音等等的運用,或討論一下 Blues(藍調)到底怎麼定義,以及 "syncopation" 這個好玩又氣死人的爵士概念之類~

“Too much of a good thing can be wonderful.”

— Mae West

Kiss & Tell Authentic Jazz(想學跳舞點這裡)

Kiss & Tell Vintage(想買古董點這裡)

給舞者的 SWING 樂理

0 LIKES

SHARE

Newer

Older

Comments (0) Newest First Subscribe via e-mail

Preview POST COMMENT…

Powered by Squarespace

 

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容

  • 程序員創業白皮書 作者:Paul Graham Paul Graham是程序員,專欄作家。他在1995年創建了第一...
    刘立山John阅读 1,847评论 0 20
  • 原来我非不快乐 始2016.6.27 聽說,能到達金字塔頂端的只有兩種動物,一是雄鷹,靠著自己的...
    _行走中的蝸牛_阅读 1,497评论 1 8
  • 为何叫做 shell ? shell prompt(PS1) 与 Carriage Return(CR) 的关系?...
    Zero___阅读 3,138评论 3 49
  • 想想自己写代码已有一年多了,有很多感触和想法,特意写下来让刚入门的程序员避免踩坑。 一、 我适合做程序员吗 这是这...
    cbw100阅读 843评论 1 14
  • 简单说,期权是一种有期限的权利,期权的买方向卖方支付一定期权费(权利金),就可以按照期权合约在未来某时以某一固定价...
    刻在石头上阅读 249评论 0 1