一、框架思想
-
观察者模式
- 观察者自下而上注入被观察者
-
被观察者自上而下发射事件
-
装饰器模式
- 自上而下,被观察者被一层层装饰
-
自下而上,观察者被一层层装饰
-
策略模式
- 函数式编程
二、最简单的订阅模型
以下是由just方法和subscribe方法组成的一个最简单的订阅模型
Observable
.just("Hello RxJava")
.subscribe(new Observer<String>() {
@Override
public void onSubscribe(Disposable d) {
}
@Override
public void onNext(String s) {
Log.d(TAG, s);
}
@Override
public void onError(Throwable e) {
}
@Override
public void onComplete() {
Log.d(TAG, "Complete");
}
});
对于just方法
public static <T> Observable<T> just(T item) {
// 参数合法判断,不允许传入空item
ObjectHelper.requireNonNull(item, "The item is null");
// hook装饰
return RxJavaPlugins.onAssembly(
// 返回真正的ObservableJust对象
new ObservableJust<T>(item));
}
public static <T> Observable<T> onAssembly(@NonNull Observable<T> source) {
Function<? super Observable, ? extends Observable> f = onObservableAssembly;
if (f != null) {
// 如果hook方法存在,则调用hook方法
return apply(f, source);
}
return source;
}
public final class ObservableJust<T> extends Observable<T> implements ScalarCallable<T> {
private final T value;
public ObservableJust(final T value) {
// 保存原始的value
this.value = value;
}
// 实际的订阅方法的实现
@Override
protected void subscribeActual(Observer<? super T> downStream) {
// 传入下游和value
ScalarDisposable<T> sd = new ScalarDisposable<T>(downStream, value);
// 订阅
downStream.onSubscribe(sd);
// Runnable.run();
sd.run();
}
}
public static final class ScalarDisposable<T> extends AtomicInteger implements QueueDisposable<T>, Runnable {
// 省略很多跟队列使用,线程安全相关的方法
@Override
public void run() {
if (get() == START && compareAndSet(START, ON_NEXT)) {
downStream.onNext(value);
if (get() == ON_NEXT) {
lazySet(ON_COMPLETE);
downStream.onComplete();
}
}
}
}
对于subscribe方法
public final Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError,
Action onComplete, Consumer<? super Disposable> onSubscribe) {
// 参数合法检查
ObjectHelper.requireNonNull(onNext, "onNext is null");
ObjectHelper.requireNonNull(onError, "onError is null");
ObjectHelper.requireNonNull(onComplete, "onComplete is null");
ObjectHelper.requireNonNull(onSubscribe, "onSubscribe is null");
// 把4个Lambda表达式合并创建LambdaObserver
LambdaObserver<T> ls = new LambdaObserver<T>(onNext, onError, onComplete, onSubscribe);
// 执行订阅
subscribe(ls);
// 返回
return ls;
}
@Override
public final void subscribe(Observer<? super T> downStream) {
// 检查参数合法性
ObjectHelper.requireNonNull(downStream, "observer is null");
try {
// hook
downStream = RxJavaPlugins.onSubscribe(this, downStream);
// hook后再次检查Observer不为null
ObjectHelper.requireNonNull(downStream, "The RxJavaPlugins.onSubscribe hook returned a null Observer. Please change the handler provided to RxJavaPlugins.setOnObservableSubscribe for invalid null returns. Further reading: https://github.com/ReactiveX/RxJava/wiki/Plugins");
// 执行实际的subscribe,传入下游Observer
subscribeActual(downStream);
} catch (NullPointerException e) { // NOPMD
throw e;
} catch (Throwable e) {
Exceptions.throwIfFatal(e);
// can't call onError because no way to know if a Disposable has been set or not
// can't call onSubscribe because the call might have set a Subscription already
RxJavaPlugins.onError(e);
NullPointerException npe = new NullPointerException("Actually not, but can't throw other exceptions due to RS");
npe.initCause(e);
throw npe;
}
}
三、操作符的实现
最简单的操作符 map
public final <R> Observable<R> map(Function<? super T, ? extends R> mapper) {
// 检查参数合法性
ObjectHelper.requireNonNull(mapper, "mapper is null");
// hook
return RxJavaPlugins.onAssembly(
// 返回真正的 ObservableMap,传入了上游引用和mapper方法
new ObservableMap<T, R>(this, mapper));
}
ObservableMap等操作符一般继承AbstractObservableWithUpstream,这种Observable持有了上游引用
public final class ObservableMap<T, U> extends AbstractObservableWithUpstream<T, U> {
final Function<? super T, ? extends U> function;
public ObservableMap(ObservableSource<T> source, Function<? super T, ? extends U> function) {
super(source);
this.function = function;
}
@Override
public void subscribeActual(Observer<? super U> downStream) {
// 合并下游和mapper,创建新的Observer:MapObserver
source.subscribe(new MapObserver<T, U>(downStream, function));
}
static final class MapObserver<T, U> extends BasicFuseableObserver<T, U> {
final Function<? super T, ? extends U> mapper;
MapObserver(Observer<? super U> downStream, Function<? super T, ? extends U> mapper) {
super(downStream);
this.mapper = mapper;
}
// 重新实现onNext
@Override
public void onNext(T t) {
if (done) {
return;
}
if (sourceMode != NONE) {
downStream.onNext(null);
return;
}
U v;
try {
// 检查mapper的输出结果,合法则赋值给
v = ObjectHelper.requireNonNull(
mapper.apply(t), "The mapper function returned a null value.");
} catch (Throwable ex) {
fail(ex);
return;
}
// 下游onNext传入经过mapper的结果
downStream.onNext(v);
}
}
对于操作符而言
- 自上而下
- 装饰器模式。操作符创建了一个新的 Observable
- 该 Observable 重写了subscribeActual方法
- subscribeActual 的实现是让所持有的上游source调用subscribe方法去订阅 被重新装饰的下游
- 自下而上
- 装饰器模式。操作符使下游Observer被装饰后形成新的Observer
- 重写了Observer的几个方法,向下传递经过操作符处理后的数值结果
自定义操作符
// compose()操作符,自上而下,封装Observable
public interface ObservableTransformer<Upstream, Downstream> {
ObservableSource<Downstream> apply(Observable<Upstream> upstream);
}
// lift()操作符,自下而上,封装Observer
public interface ObservableOperator<Downstream, Upstream> {
Observer<? super Upstream> apply(@NonNull Observer<? super Downstream> observer) throws Exception;
}
- lift
- 创建并返回新的Observable,即ObservableLift
- 订阅发生在operator.apply(s),即得到新的Observable之后
- 意图是封装一个操作符,类似于create
- compose
- 意图是封装一系列操作符,方便复用
四、线程调度
举例 .subscribeOn(AndroidSchedulers.mainThread())
public final Observable<T> subscribeOn(Scheduler scheduler) {
ObjectHelper.requireNonNull(scheduler, "scheduler is null");
return RxJavaPlugins.onAssembly(
// 返回Observable,传入上游this和调度器scheduler
new ObservableSubscribeOn<T>(this, scheduler));
}
public final class ObservableSubscribeOn<T> extends AbstractObservableWithUpstream<T, T> {
final Scheduler scheduler;
public ObservableSubscribeOn(ObservableSource<T> source, Scheduler scheduler) {
super(source);
this.scheduler = scheduler;
}
@Override
public void subscribeActual(final Observer<? super T> downStream) {
final SubscribeOnObserver<T> parent = new SubscribeOnObserver<T>(downStream);
// SubscribeOnObserver实现了Disposable,将其传递给下游的onSubscribe
downStream.onSubscribe(parent);
// 把source的订阅放在Runnable中,由scheduler调度
parent.setDisposable(scheduler.scheduleDirect(new Runnable() {
@Override
public void run() {
source.subscribe(parent);
}
}));
}
}
讲解
- subscribeOn 线程调度即发生在subscribe时
- subscribeOn 只能生效一次
- 因为完整的订阅过程是自下而上订阅,数据源发射事件在自上而下传递,所以真正发射事件所在的线程,是有最接近上游的一次subscribeOn来决定的,其他的都会被覆盖
- 从代码上看,就是经历了n个线程的传递后,把source.subscribe(parent)放在了最上游的那个线程中去发射,如果没有observeOn影响,整个事件流都会在那个线程完成
- 为什么flatMap能改变subscribeOn的这种特性?因为flatMap等操作符创建了新的Observable,而不是单纯传递上下游
对于调度器 AndroidSchedulers.mainThread()。其实际上是 new HandlerScheduler(new Handler(Looper.getMainLooper()))
从上面看出,实现线程调度的是scheduler.scheduleDirect方法
@Override
public Disposable scheduleDirect(Runnable run, long delay, TimeUnit unit) {
if (run == null) throw new NullPointerException("run == null");
if (unit == null) throw new NullPointerException("unit == null");
run = RxJavaPlugins.onSchedule(run);
// ScheduledRunnable 实现了Disposable接口
ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);
// 大家熟悉的handler.postDelayed
handler.postDelayed(scheduled, Math.max(0L, unit.toMillis(delay)));
return scheduled;
}
// 一般的Schedule都是用createWorker().schedule(scheduled, delay, unit)的方式去实现线程调度
// Worker实现相应的disposable接口,便于取消订阅时停止执行尚未执行的Runnable,并装饰相应的hook。
// 这个类的实现比较有点划水,可能因为是主线程,所以不担心泄露
@Override
public Worker createWorker() {
return new HandlerWorker(handler);
}
private static final class HandlerWorker extends Worker {
private final Handler handler;
private volatile boolean disposed;
HandlerWorker(Handler handler) {
this.handler = handler;
}
@Override
public Disposable schedule(Runnable run, long delay, TimeUnit unit) {
if (run == null) throw new NullPointerException("run == null");
if (unit == null) throw new NullPointerException("unit == null");
if (disposed) {
return Disposables.disposed();
}
run = RxJavaPlugins.onSchedule(run);
ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);
Message message = Message.obtain(handler, scheduled);
message.obj = this; // Used as token for batch disposal of this worker's runnables.
handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));
// Re-check disposed state for removing in case we were racing a call to dispose().
if (disposed) {
handler.removeCallbacks(scheduled);
return Disposables.disposed();
}
return scheduled;
}
@Override
public void dispose() {
disposed = true;
handler.removeCallbacksAndMessages(this /* token */);
}
@Override
public boolean isDisposed() {
return disposed;
}
}
举例 .observeOn(AndroidSchedulers.mainThread())
public final Observable<T> observeOn(Scheduler scheduler) {
return observeOn(scheduler, false, bufferSize());
}
public final Observable<T> observeOn(Scheduler scheduler, boolean delayError, int bufferSize) {
ObjectHelper.requireNonNull(scheduler, "scheduler is null");
ObjectHelper.verifyPositive(bufferSize, "bufferSize");
return RxJavaPlugins.onAssembly(
new ObservableObserveOn<T>(this, scheduler, delayError, bufferSize));
}
// 以上代码都很熟悉了,暂不赘述
public final class ObservableObserveOn<T> extends AbstractObservableWithUpstream<T, T> {
final Scheduler scheduler;
final boolean delayError;
final int bufferSize;
public ObservableObserveOn(ObservableSource<T> source, Scheduler scheduler, boolean delayError, int bufferSize) {
super(source);
this.scheduler = scheduler; // 线程调度器
this.delayError = delayError; // 出现错误是否立刻中断线程
this.bufferSize = bufferSize; //缓冲区大小,默认128
}
@Override
protected void subscribeActual(Observer<? super T> observer) {
if (scheduler instanceof TrampolineScheduler) {
// 默认线程则不做线程调度,直接在当前线程中调用
source.subscribe(observer);
} else {
Scheduler.Worker w = scheduler.createWorker();
source.subscribe(
// 用Worker、和相关参数装饰observer,得到新的Observer注入上游
new ObserveOnObserver<T>(observer, w, delayError, bufferSize));
}
}
static final class ObserveOnObserver<T> extends BasicIntQueueDisposable<T> implements Observer<T>, Runnable {
//省略部分代码
@Override
public void onSubscribe(Disposable s) {
if (DisposableHelper.validate(this.s, s)) {
this.s = s;
//省略部分代码,创建缓冲队列
queue = new SpscLinkedArrayQueue<T>(bufferSize);
actual.onSubscribe(this);
}
}
@Override
public void onNext(T t) {
if (done) {
return;
}
if (sourceMode != QueueDisposable.ASYNC) {
queue.offer(t); //上游的数据全部先入队列
}
//执行调度
schedule();
}
void schedule() {
if (getAndIncrement() == 0) {
// 队列如果已经空了,则再次调度
worker.schedule(this);
}
}
@Override
public void run() {
// Fused 熔断机制,默认false
if (outputFused) {
drainFused();
} else {
drainNormal();
}
}
//该函数在Runnable所在的线程执行,从缓冲队列里拿出事件,向下游发射
void drainNormal() {
int missed = 1;
final SimpleQueue<T> q = queue;
final Observer<? super T> a = actual;
for (;;) {
// 如果设置了errorDelay,则不管队列是否为空,发生了错误都会中断发射,并调用observer的onError
if (checkTerminated(done, q.isEmpty(), a)) {
return;
}
for (;;) {
boolean d = done;
T v;
try {
v = q.poll(); //队列中取数据
} catch (Throwable ex) {
Exceptions.throwIfFatal(ex);
s.dispose();
q.clear();
a.onError(ex);
worker.dispose();
return;
}
boolean empty = v == null;
if (checkTerminated(d, empty, a)) {
return;
}
if (empty) {
break;
}
// 向下游发射数据
a.onNext(v);
}
missed = addAndGet(-missed);
if (missed == 0) {
break;
}
}
}
}
}
讲解
- 订阅发生在调度前,说明线程调度不影响订阅过程
- ObserveOnObserver持有下游observer和调度器,并实现Runnable接口
- 订阅时(onSubscribe)会创建一个缓冲队列,当上游数据到来先放在队列,接着在调度线程中取出并发射到下游
- 由上看observeOn可以多次生效
五、背压
- 默认策略判断是否触发背压的因素:
- 同步场景中,有发射数是否超出响应式拉取值 request 决定
- 异步场景中,由是否超出缓冲池 queue 的承受能力决定。需要下游的request方法拉取queue的数据
- observeOn允许我们设置缓冲队列的容量大小
- 在onSubscribe(Subscription s)回调提供的s可以调用request方法来增加拉取数;如果不重写,默认执行s.request(Long.MAX_VALUE)
- 背压策略
- ERROR 触发背压直接抛异常 MissingBackpressureException
- BUFFER: queue无限大,知道OOM
- DROP: 超载则抛弃之后的数据,不抛异常
- LATEST:超载后抛弃之后数据,且是专用有一个额外空间保留当前最新一次数据
举例 onBackpressureDrop 方法
public final class FlowableOnBackpressureDrop<T> extends AbstractFlowableWithUpstream<T, T> implements Consumer<T> {
final Consumer<? super T> onDrop;
@Override
protected void subscribeActual(Subscriber<? super T> s) {
this.source.subscribe(new BackpressureDropSubscriber<T>(s, onDrop));
}
static final class BackpressureDropSubscriber<T> extends AtomicLong implements FlowableSubscriber<T>, Subscription {
@Override
public void onNext(T t) {
if (done) {
return;
}
long r = get();
if (r != 0L) {
actual.onNext(t);
BackpressureHelper.produced(this, 1);
} else {
try {
onDrop.accept(t);
} catch (Throwable e) {
Exceptions.throwIfFatal(e);
cancel();
onError(e);
}
}
}
@Override
public void request(long n) {
if (SubscriptionHelper.validate(n)) {
BackpressureHelper.add(this, n);
}
}
}
}
BackpressureDropSubscriber继承了AtomicLong,实现了Subscriber。只有判断自身不为0时才会向下游发射元素,否则将被抛弃。这个数值的计算在BackpressureHelper中计算
// 每执行一次onNext,当前值减一
public static long produced(AtomicLong requested, long n) {
for (;;) {
long current = requested.get();
if (current == Long.MAX_VALUE) {
return Long.MAX_VALUE;
}
long update = current - n;
if (update < 0L) {
RxJavaPlugins.onError(new IllegalStateException("More produced than requested: " + update));
update = 0L;
}
if (requested.compareAndSet(current, update)) {
return update;
}
}
}
// request调用时,值会加到当前值上。
public static long add(AtomicLong requested, long n) {
for (;;) {
long r = requested.get();
if (r == Long.MAX_VALUE) {
return Long.MAX_VALUE;
}
long u = addCap(r, n);
if (requested.compareAndSet(r, u)) {
return r;
}
}
}
这样,就实现了发生背压则抛弃新的值
onBackpressureLatest的实现和前者类似,只是多了一个对象来存储最新一次的值:
final AtomicReference<T> current = new AtomicReference<T>();
@Override
public void onNext(T t) {
current.lazySet(t);
drain();
}
六、Subject
Subject 继承Observable,实现Observer。具有自攻自受的特性,相当于是一个中间层
一般Observable观察的对象往往是静态的,如一个常量、一个文件。有确定的开头和结尾
Subject是动态的,监听没有被中断的时候,可以有不确定的事件传来
- Observable特性
- 订阅:如果下游可用,则加入到订阅队列中
@Override
public void subscribeActual(Observer<? super T> t) {
PublishDisposable<T> ps = new PublishDisposable<T>(t, this);
t.onSubscribe(ps);
if (add(ps)) {
// if cancellation happened while a successful add, the remove() didn't work
// so we need to do it again
if (ps.isDisposed()) {
remove(ps);
}
} else {
Throwable ex = error;
if (ex != null) {
t.onError(ex);
} else {
t.onComplete();
}
}
}
boolean add(PublishDisposable<T> ps) {
for (;;) {
PublishDisposable<T>[] a = subscribers.get();
if (a == TERMINATED) {
return false;
}
int n = a.length;
@SuppressWarnings("unchecked")
PublishDisposable<T>[] b = new PublishDisposable[n + 1];
System.arraycopy(a, 0, b, 0, n);
b[n] = ps;
if (subscribers.compareAndSet(a, b)) {
return true;
}
}
}
- Observer 特性
- 如果本身可用,切存在可用的观察者,则向下传递事件
// 但举例onNext方法
@Override
public void onNext(T t) {
if (subscribers.get() == TERMINATED) {
return;
}
if (t == null) {
onError(new NullPointerException("onNext called with null. Null values are generally not allowed in 2.x operators and sources."));
return;
}
// 遍历下游观察者队列,并逐个调用onNext
for (PublishDisposable<T> s : subscribers.get()) {
s.onNext(t);
}
}
七、性能问题
.map(x -> x + 1) 和 .flatMap(x -> Observable.just(x + 1))有什么区别
- map和flatMap的区别
- map没有创建新的Observable,flatMap创建了新的Observable,相当于创建了新的流
- map在上游和下游之间仍是线性的。flatMap已经上升了一个阶,即每一个元素进来,都会变成一个新的source,而下游也会变成一个新的observer
循环的静态Observable和动态的Subject之间的区别
void callback(int item) {
Observable
.<Integer>create(emitter -> {
emitter.onNext(item);
})
.map(i -> i + 1)
.subscribe(i -> Log.d(TAG, "i = " + i));
}
Subject<Integer> mSubject = PublishSubject.create();
void init() {
mSuject
.map(i -> i + 1)
.subscribe(i -> Log.d(TAG, "i = " + i));
}
void callback(int item) {
mSuject.onNext(item);
}
- 循环创建的事件流,所有操作符都涉及了new对象,如果callback被频繁调用,则会产生十分多的临时对象造成内存抖动
八、Rx扩展
RxBinding
final class ViewClickObservable extends Observable<Object> {
private final View view;
ViewClickObservable(View view) {
this.view = view;
}
@Override protected void subscribeActual(Observer<? super Object> observer) {
if (!checkMainThread(observer)) {
return;
}
//订阅阶段执行的逻辑,创建listener绑定view
Listener listener = new Listener(view, observer);
observer.onSubscribe(listener);
view.setOnClickListener(listener);
}
static final class Listener extends MainThreadDisposable implements OnClickListener {
private final View view;
private final Observer<? super Object> observer;
Listener(View view, Observer<? super Object> observer) {
this.view = view;
this.observer = observer;
}
@Override public void onClick(View v) {
if (!isDisposed()) {
//发生点击时传递事件给下游
observer.onNext(Notification.INSTANCE);
}
}
@Override protected void onDispose() {
view.setOnClickListener(null);
}
}
}
RxPermissions
public <T> ObservableTransformer<T, Boolean> ensure(final String... permissions) {
return new ObservableTransformer<T, Boolean>() {
@Override
public ObservableSource<Boolean> apply(Observable<T> o) {
return request(o, permissions)
// 转换 Observable<Permission> 为 Observable<Boolean>
.buffer(permissions.length)
.flatMap(new Function<List<Permission>, ObservableSource<Boolean>>() {
@Override
public ObservableSource<Boolean> apply(List<Permission> permissions) {
if (permissions.isEmpty()) {
// Occurs during orientation change, when the subject receives onComplete.
// In that case we don't want to propagate that empty list to the
// subscriber, only the onComplete.
return Observable.empty();
}
// Return true if all permissions are granted.
for (Permission p : permissions) {
if (!p.granted) {
return Observable.just(false);
}
}
return Observable.just(true);
}
});
}
};
}