【梯度下降法】一:快速教程、Python简易实现以及对学习率的探讨

前言

梯度下降法(Gradient Descent)是机器学习中最常用的优化方法之一,常用来求解目标函数的极值。

其基本原理非常简单:沿着目标函数梯度下降的方向搜索极小值(也可以沿着梯度上升的方向搜索极大值)。

但是如何调整搜索的步长(也叫学习率,Learning Rate)、如何加快收敛速度以及如何防止搜索时发生震荡却是一门值得深究的学问。接下来本文将分析第一个问题:学习率的大小对搜索过程的影响。全部源代码可在本人的GitHub:monitor1379中下载。

快速教程

前言啰嗦完了,接下来直接上干货:如何编写梯度下降法。代码运行环境为Python 2.7.11 + NumPy 1.11.0 + Matplotlib 1.5.1

首先先假设现在我们需要求解目标函数func(x) = x * x的极小值,由于func是一个凸函数,因此它唯一的极小值同时也是它的最小值,其一阶导函数 为dfunc(x) = 2 * x

import numpy as np
import matplotlib.pyplot as plt

# 目标函数:y=x^2
def func(x):
    return np.square(x)


# 目标函数一阶导数:dy/dx=2*x
def dfunc(x):
    return 2 * x

接下来编写梯度下降法函数:

# Gradient Descent
def GD(x_start, df, epochs, lr):
    """
    梯度下降法。给定起始点与目标函数的一阶导函数,求在epochs次迭代中x的更新值
    :param x_start: x的起始点
    :param df: 目标函数的一阶导函数
    :param epochs: 迭代周期
    :param lr: 学习率
    :return: x在每次迭代后的位置(包括起始点),长度为epochs+1
    """
    xs = np.zeros(epochs+1)
    x = x_start
    xs[0] = x
    for i in range(epochs):
        dx = df(x)
        # v表示x要改变的幅度
        v = - dx * lr
        x += v
        xs[i+1] = x
    return xs

需要注意的是参数df是一个函数指针,即需要传进我们的目标函数一阶导函数。

测试代码如下,假设起始搜索点为-5,迭代周期为5,学习率为0.3:

def demo0_GD():
    x_start = -5
    epochs = 5
    lr = 0.3
    x = GD(x_start, dfunc, epochs, lr=lr)
    print x
    # 输出:[-5.     -2.     -0.8    -0.32   -0.128  -0.0512]

继续修改一下demo0_GD函数以更加直观地查看梯度下降法的搜索过程:

def demo0_GD():
    """演示如何使用梯度下降法GD()"""
    line_x = np.linspace(-5, 5, 100)
    line_y = func(line_x)

    x_start = -5
    epochs = 5

    lr = 0.3
    x = GD(x_start, dfunc, epochs, lr=lr)

    color = 'r'
    plt.plot(line_x, line_y, c='b')
    plt.plot(x, func(x), c=color, label='lr={}'.format(lr))
    plt.scatter(x, func(x), c=color, )
    plt.legend()
    plt.show()

从运行结果来看,当学习率为0.3的时候,迭代5个周期似乎便能得到蛮不错的结果了。


demo0_GD运行结果

梯度下降法确实是求解非线性方程极值的利器之一,但是如果学习率没有调整好的话会发生什么样的事情呢?

学习率对梯度下降法的影响

在上节代码的基础上编写新的测试代码demo1_GD_lr,设置学习率分别为0.1、0.3与0.9:


def demo1_GD_lr():
    # 函数图像
    line_x = np.linspace(-5, 5, 100)
    line_y = func(line_x)
    plt.figure('Gradient Desent: Learning Rate')

    x_start = -5
    epochs = 5

    lr = [0.1, 0.3, 0.9]

    color = ['r', 'g', 'y']
    size = np.ones(epochs+1) * 10
    size[-1] = 70
    for i in range(len(lr)):
        x = GD(x_start, dfunc, epochs, lr=lr[i])
        plt.subplot(1, 3, i+1)
        plt.plot(line_x, line_y, c='b')
        plt.plot(x, func(x), c=color[i], label='lr={}'.format(lr[i]))
        plt.scatter(x, func(x), c=color[i])
        plt.legend()
    plt.show()

从下图输出结果可以看出两点,在迭代周期不变的情况下:

  • 学习率较小时,收敛到正确结果的速度较慢。
  • 学习率较大时,容易在搜索过程中发生震荡。
demo1_GD_lr运行结果

综上可以发现,学习率大小对梯度下降法的搜索过程起着非常大的影响,为了解决上述的两个问题,接下来的博客《【梯度下降法】二:冲量(momentum)的原理与Python实现》将讲解冲量(momentum)参数是如何在梯度下降法中起到加速收敛与减少震荡的作用。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容