获取kafka consumer offset

1.功能

读取topic为 __consumer_offsets 里的数据,解析。

2. 代码

 
public static void main(String[] args) throws Exception {
  Consumer<byte[], byte[]> consumer = createKafkaConsumer();
        consumer.subscribe(Lists.newArrayList("__consumer_offsets"));
        while (true) {
            ConsumerRecords<byte[], byte[]> records = consumer.poll(100);
            Iterator<ConsumerRecord<byte[], byte[]>> iterator = records.iterator();
            Map<String, Integer> map = Maps.newHashMap();
            while (iterator.hasNext()) {
                ConsumerRecord<byte[], byte[]> record = iterator.next();
                if (record.key() == null) {
                    continue;
                }
                BaseKey baseKey = GroupMetadataManager.readMessageKey(ByteBuffer.wrap(record.key()));
                byte[] value = record.value();
                if (value == null) {
                    continue;
                }
                OffsetAndMetadata offset = GroupMetadataManager.readOffsetMessageValue(ByteBuffer.wrap(value));
                if (baseKey instanceof OffsetKey) {
                    OffsetKey newKey = (OffsetKey) baseKey;
                    String group = newKey.key().group();
                    TopicPartition tp = newKey.key().topicPartition();
                    System.out.println(group + "," + tp.topic() + "," + tp.partition() + "," + offset.offsetMetadata().offset()));
                }
            }
        }
}
 static Consumer<byte[], byte[]> createKafkaConsumer() {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("group.id", "test2");
        props.put("enable.auto.commit", "false");
        props.put("auto.offset.reset", "latest");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.ByteArrayDeserializer");
        return new KafkaConsumer<byte[], byte[]>(props);
    }

3.pom

 <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>2.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.11</artifactId>
            <version>2.0.1</version>
            <exclusions>
                <exclusion>
                    <groupId>log4j</groupId>
                    <artifactId>log4j</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容

  • Kafka入门经典教程-Kafka-about云开发 http://www.aboutyun.com/threa...
    葡萄喃喃呓语阅读 10,805评论 4 54
  • 本文转载自http://dataunion.org/?p=9307 背景介绍Kafka简介Kafka是一种分布式的...
    Bottle丶Fish阅读 5,428评论 0 34
  • 一、基本概念 介绍 Kafka是一个分布式的、可分区的、可复制的消息系统。它提供了普通消息系统的功能,但具有自己独...
    ITsupuerlady阅读 1,618评论 0 9
  • 安二哥 别走 观《大唐荣耀》叹安氏情种 只要你愿意 这大好江山 万千黎民 都是你的 安氏情种 倾一世痴狂 为心爱女...
    lsjr陈浮阅读 412评论 1 7
  • 半夜街头,女孩跑了好几家便利店,发现常喝的果酒,已经卖断货了。从货架上取下瓶可乐,“谢谢惠顾”,走进黑沉沉夜色里。...
    豆沙铜锣烧阅读 211评论 0 0