背景
polars学习系列文章,第7篇 缺失值
该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习
仓库地址:https://github.com/DataShare-duo/polars_learn
小编运行环境
import sys
print('python 版本:',sys.version.split('|')[0])
#python 版本: 3.11.9
import polars as pl
print("polars 版本:",pl.__version__)
#polars 版本: 0.20.22
polars 中缺失值的定义
在 polars 中缺失值用 null
来表示,只有这1种表示方式,这个与 pandas 不同,在 pandas 中 NaN
(NotaNumber)也代表是缺失值,但在polars中把 NaN
归属为一种浮点数据
df = pl.DataFrame(
{
"value": [1,2,3, None,5,6,None,8,9],
},
)
print(df)
#shape: (9, 1)
┌───────┐
│ value │
│ --- │
│ i64 │
╞═══════╡
│ 1 │
│ 2 │
│ 3 │
│ null │
│ 5 │
│ 6 │
│ null │
│ 8 │
│ 9 │
└───────┘
polars中缺失值包括的2种元信息
- 缺失值数量,可以通过
null_count
方法来快速获取,因为已经是计算好的,所以调用该方法会立即返回结果 - 有效位图(validity bitmap),代表是否是缺失值,在内存中用 0 或 1 进行编码来表示,所占的内存空间非常小,通常占用空间为(数据框长度 / 8) bytes,通过
is_null
方法来查看数据是否是缺失值
null_count_df = df.null_count()
print(null_count_df)
#shape: (1, 1)
┌───────┐
│ value │
│ --- │
│ u32 │
╞═══════╡
│ 2 │
└───────┘
is_null_series = df.select(
pl.col("value").is_null(),
)
print(is_null_series)
#shape: (9, 1)
┌───────┐
│ value │
│ --- │
│ bool │
╞═══════╡
│ false │
│ false │
│ false │
│ true │
│ false │
│ false │
│ true │
│ false │
│ false │
└───────┘
缺失值填充
缺失值填充主要通过 fill_null
方法来处理,但是需求指定填充缺失值的方法
- 常量,比如用 0 来填充
- 填充策略,例如:向前、向后 等
- 通过表达式,比如利用其他列来填充
- 插值法
df = pl.DataFrame(
{
"col1": [1, 2, 3],
"col2": [1, None, 3],
},
)
print(df)
#shape: (3, 2)
┌──────┬──────┐
│ col1 ┆ col2 │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞══════╪══════╡
│ 1 ┆ 1 │
│ 2 ┆ null │
│ 3 ┆ 3 │
└──────┴──────┘
常量填充
fill_literal_df = df.with_columns(
fill=pl.col("col2").fill_null(pl.lit(2)),
)
print(fill_literal_df)
#shape: (3, 3)
┌──────┬──────┬──────┐
│ col1 ┆ col2 ┆ fill │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 │
╞══════╪══════╪══════╡
│ 1 ┆ 1 ┆ 1 │
│ 2 ┆ null ┆ 2 │
│ 3 ┆ 3 ┆ 3 │
└──────┴──────┴──────┘
填充策略
填充策略:{'forward', 'backward', 'min', 'max', 'mean', 'zero', 'one'}
fill_df = df.with_columns(
forward=pl.col("col2").fill_null(strategy="forward"),
backward=pl.col("col2").fill_null(strategy="backward"),
)
print(fill_df)
#shape: (3, 4)
┌──────┬──────┬─────────┬──────────┐
│ col1 ┆ col2 ┆ forward ┆ backward │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 ┆ i64 │
╞══════╪══════╪═════════╪══════════╡
│ 1 ┆ 1 ┆ 1 ┆ 1 │
│ 2 ┆ null ┆ 1 ┆ 3 │
│ 3 ┆ 3 ┆ 3 ┆ 3 │
└──────┴──────┴─────────┴──────────┘
通过表达式
fill_median_df = df.with_columns(
fill=pl.col("col2").fill_null(pl.median("col2")), #类型会转换为浮点型
)
print(fill_median_df)
#shape: (3, 3)
┌──────┬──────┬──────┐
│ col1 ┆ col2 ┆ fill │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ f64 │
╞══════╪══════╪══════╡
│ 1 ┆ 1 ┆ 1.0 │
│ 2 ┆ null ┆ 2.0 │
│ 3 ┆ 3 ┆ 3.0 │
└──────┴──────┴──────┘
通过插值法
fill_interpolation_df = df.with_columns(
fill=pl.col("col2").interpolate(),
)
print(fill_interpolation_df)
#shape: (3, 3)
┌──────┬──────┬──────┐
│ col1 ┆ col2 ┆ fill │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ f64 │
╞══════╪══════╪══════╡
│ 1 ┆ 1 ┆ 1.0 │
│ 2 ┆ null ┆ 2.0 │
│ 3 ┆ 3 ┆ 3.0 │
└──────┴──────┴──────┘
历史相关文章
- Python polars学习-01 读取与写入文件
- Python polars学习-02 上下文与表达式
- polars学习-03 数据类型转换
- Python polars学习-04 字符串数据处理
- Python polars学习-05 包含的数据结构
- Python polars学习-06 Lazy / Eager API
以上是自己实践中遇到的一些问题,分享出来供大家参考学习,欢迎关注微信公众号:DataShare ,不定期分享干货