大模型相关

使用Transformers加载大模型, 并使用流式输出进行文本生成

    from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
    model = AutoModelForCausalLM.from_pretrained(
        args.model, device_map="auto", torch_dtype="auto", trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer or args.model, trust_remote_code=True
    )

    while True:
        prompt = input('请输入内容: ')
        if prompt == 'end':
            break
        inputs = tokenizer(
            # args.prompt,
            prompt,
            return_tensors="pt",
        )
        streamer = TextStreamer(tokenizer) if args.streaming else None
        outputs = model.generate(
            inputs.input_ids.cuda(),
            max_new_tokens=args.max_tokens,
            streamer=streamer,
            eos_token_id=tokenizer.convert_tokens_to_ids(args.eos_token),
            do_sample=True,
            repetition_penalty=1.3,
            no_repeat_ngram_size=5,
            temperature=0.7,
            top_k=40,
            top_p=0.8,
        )
        if streamer is None:
            print(tokenizer.decode(outputs[0], skip_special_tokens=True))

使用Transformers加载大模型, 并使用流式输出进行对话

  • 这种有简单的历史对话功能
    os_name = platform.system()
    clear_command = 'cls' if os_name == 'windows' else 'clear'
    stop_stream = False

    model_path = r'/01-aiYi-34B-Chat-4bits'
    tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
    # Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        device_map="auto",
        torch_dtype='auto',
        trust_remote_code=True
    ).cuda().eval()

    streamer = TextStreamer(tokenizer)
    history = []
    print("零一万物 01-aiYi-34B-Chat-4bits 量化模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序\n")
    while True:
        print("请输入prompt,以Ctrl+D(在Windows上是Ctrl+Z)结束输入:")
        content = sys.stdin.readlines()
        content = ' '.join(content)
        content = content.strip()
        if content == "stop":
            break
        if content == "clear":
            history = []
            os.system('clear')
            print("零一万物 01-aiYi-34B-Chat-4bits 量化模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序")
            continue

        content = content if content else 'hi'
        messages= {"role": "user", "content": content}
        history.append(messages)
        input_ids = tokenizer.apply_chat_template(conversation=history, tokenize=True, add_generation_prompt=True,
                                                  return_tensors='pt')

        output_ids = model.generate(input_ids.to('cuda'),streamer=streamer,max_new_tokens=512,do_sample=True,
                                    eos_token_id=tokenizer.convert_tokens_to_ids("<|im_end|>"),
                                    bos_token_id=tokenizer.convert_tokens_to_ids("<|im_start|"),
                                    repetition_penalty=1.3, no_repeat_ngram_size=5,temperature=0.7,top_k=40,top_p=0.8)

        response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
        print('*' * 30)
        print('返回的结果是:{}'.format(response))
        history.append({"role": "assistant", "content": response})
  • 更完善的维护上下文关系,需要生成Standalone question.

    可以参考
    (1)LangChain中condense llm的工作原理
    简单来说就是给定一个新的和Chat History来提升模型生成Standalone questionprompt = f"""
    Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
    Chat History:
    Human: What did the president say about Ketanji Brown Jackson
    Assistant: The President said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson to serve on the United States Supreme Court. He described her as one of our nation's top legal minds and mentioned that she comes from a family of public school educators and police officers. He also highlighted that she has received broad support from various groups, including the Fraternal Order of Police and former judges appointed by Democrats and Republicans.
    Follow Up Input: Did he mention who she succeeded
    Standalone question:
    """

    (2)How to construct the prompt for a standalone question?
    instruction = "Generate a standalone question which is based on the new question plus the chat history. Just create the standalone question without commentary. New question: ".question;
    chatHistory[] = ["role" => "user", "content" => $instruction];

大模型的分布式部署

    with init_empty_weights():
        model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)

    model = load_checkpoint_and_dispatch(model, model_path,
                                         device_map='auto',
                                         offload_folder="offload",
                                         offload_state_dict=True,
                                         dtype = "float16",
                                         no_split_module_classes=["LlamaDecoderLayer"])
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容