1. 什么是赌徒谬误
赌徒谬误(Gambler's Fallacy)亦称为蒙地卡罗谬误,是一种错误的信念,以为随机序列中一个事件发生的机会率与之前发生的事件有关,即其发生的机会率会随着之前没有发生该事件的次数而上升。如重复抛一个公平硬币,而连续多次抛出反面朝上,赌徒可能错误地认为,下一次抛出正面的机会会较大。
赌徒谬误是生活中常见的一种不合逻辑的推理方式,认为一系列事件的结果都在某种程度上隐含了自相关的关系,赌徒会认为事件A的结果影响到了事件B,即是说B是“依赖”于A的。例如,一晚上手气不好的赌徒总认为再过几把之后就会风水轮流转,幸运降临。相反的例子,连续的好天气让人担心周末会下起大雨。
赌徒谬误亦指相信某一个特定的结果由于最近已发生了(“运气用尽了”)或最近没有发生(“交霉运”),再发生的机会会较低。
2. 产生赌徒谬误的原因
赌徒谬误的产生是因为人们错误的诠释了“大数法则”的平均律。投资者倾向于认为大数法则适用于大样本的同时,也适用于小样本。卡尼曼和特沃斯基把赌徒谬误戏称为“小数法则”(law of small numbers)。在统计学和经济学中,最重要的一条规律是“大数定律”,即随机变量在大量重复实验中呈现出几乎必然的规律,样本越大、则对样本期望值的偏离就越小。例如,抛掷硬币出现正面的概率或期望值是0.5,但如果仅抛掷一次,则出现正面的概率是0或1(远远偏离0.5),随着抛掷次数的增加(即样本的增大),那么硬币出现正面的概率就逐渐接近0.5。但根据认知心理学的“小数定律”,人们通常会忽视样本大小的影响,认为小样本和大样本具有同样的期望值。
所有轮盘赌中最受欢迎的系统是戴伦伯特系统,它正是以赌徒未能认识到独立事件的独立性这一“赌徒谬误”为基础的。参与者赌红色或黑色(或其他任何一个对等赌金的赌),每赌失败一次就加大赌数,每赌赢一次就减少赌数。
卡尼曼、特沃斯基(1982) 和 Terrell (1994)讨论了这种称为“赌徒谬误”的认知偏差。而 Shefrin (1999)表明,在掷硬币的实验中,连续出现正面或反面时,人们基本上会预测下次结果是相反的。如果是在股票市场中,投资者就会在股价连续上涨或下跌一段时间后预期它会反转。这表明,当股价连续上涨或下跌的序列超过某一点时,投资者就会出现反转的预期。因而投资者倾向于在股价连续上涨超过某一临界点时卖出。Shefrin(1999)探讨了在整个市场的行情向好时,人气上升,而市场行情不好时,人气下降的情况,2000年前后网络股及科技股的忽剧涨跌就是这样一个例子。
赌徒谬误的背后是一种盲目的自信,认为自己比大部分人都聪明,擅长逆向思维,能够在随机事件中找到“隐藏的规律”。