单细胞文献起始——补充背景知识

听说课程配笔记,学习无压力

构建文库

综述:Comparative Analysis of Single-Cell RNA Sequencing Methods. 2017,  (doi: 10.1016/j.molcel.2017.01.023.)

涉及到了6中文库构建方法(CEL-seq2, Drop-seq, MARS-seq, SCRB-

seq, Smart-seq, and Smart-seq2),可以再结合相关的每一个文库找6篇文章

文章发现:Smart-seq2可以在每个细胞中找到最多的基因,同样费用比较高;检测少量细胞时,MARS-seq、SCRB-seq、Smart-seq2更有效



 归一化  

文献1:Assessment of Single Cell RNA-Seq Normalization Methods,2017 (doi: 10.1534/g3.117.040683)

评价了几种归一化方法:

fragments per kilobase of transcript per million mapped

reads (FPKM)(Mortazavi et al., 2008)

upper quartile (UQ)(Bullard et al., 2010)

Trimmed mean of M-values (TMM)(Robinson and Oshlack, 2010)

DESeq(Love et al.,2014)

removed unwanted variation (RUV)(Risso et al., 2014)

gamma regression model (GRM)(Ding et al., 2015).


文献2:Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq, 2019 (DOI:https://doi.org/10.1016/j.cels.2019.03.010)

主要研究了scone方法:a flexible framework for assessing performance based

on a comprehensive panel of data-driven metrics

(http://bioconductor.org/packages/scone/)

另外方法还有很多,比如:LSF(Lun Sum Factors),BigNorm, Scnorm, BASiCS, RLE(size factor relative log expression)

 

降维    

PDF: https://lib.ugent.be/fulltxt/RUG01/002/349/740/RUG01-002349740_2017_0001_AC.pdf 

值得好好阅读,讲了许多关于降维原理和应用的知识

文中1.5.1部分(Clustering high-dimension to identify subtypes)写出:

Importantly, the reduced dimensionality data are less noisy than the high-dimensional data bust lose some of the biological variance.

文章1:PCA, MDS, k-means, Hierarchical clustering and heatmap.

文章2:Outlier Preservation by Dimensionality Reduction Techniques

"MDS best choice for preserving outliers, PCA for variance, & T-SNE for clusters"


鉴定细胞群

每个术语都对应一篇文献

降维:PCA、tSNE、DM(Diffusion maps)

feature selection:M3Drop(Michaelis-Menten Modelling of Dropouts)、HVG(Highly variable genes)、Spike-in based methods、Correalated expression

Seurat:is an R package designed for the analysis and visualization of single cell RNA-seq data. It contains easy-to-use implementations of commonly used analytical techniques, including the identification of highly variable genes, dimensionality reduction (PCA, ICA, t-SNE), standard unsupervised clustering algorithms (density clustering, hierarchical clustering, k-means), and the discovery of differentially expressed genes and markers.

SC3:SC3 achieves high accuracy and robustness by consistently integrating different clustering solutions through a consensus approach. Tests on twelve published datasets show that SC3 outperforms five existing methods while remaining scalable, as shown by the analysis of a large dataset containing 44,808 cells. Moreover, an interactive graphical implementation makes SC3 accessible to a wide audience of users, and SC3 aids biological interpretation by identifying marker genes, differentially expressed genes and outlier cells.

tSNE+kmeans

SNN-Clip: doi: 10.1093/bioinformatics/btv088

SINCERA: SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis.

综述:A systematic performance evaluation of clustering methods for single-cell RNA-seq data (SC3 and Seurat show the most favorable results)



关于各种单细胞工具:https://www.scrna-tools.org/

文章在:Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database


在单细胞天地的公众号里面有

#第一期单细胞视频笔记汇总

根据目录内容,里面大多数是教学如何实现代码得到想要的结果,所以在这里我选择先花两天时间补充背景知识【12.15-12.16】而后再根据里面的内容来进行具象实现。

#第一期单细胞视频笔记汇总 (qq.com)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342