查询ElasticSearch:用SQL代替DSL

233酱工作中使用ELK作为应用日志的链路追踪服务,偶尔使用Kibana拼接ES DSL简直要命。如果你和我一样「熟悉SQL,但不咋会写DSL」 or 「想要用SQL简化查询」,本文会介绍一下官方对ES SQL的支持,希望对你有所帮助~

ES7.x版本的x-pack自带ElasticSearch SQL,我们可以直接通过SQL REST API、SQL CLI等方式使用SQL查询。

SQL REST API

在Kibana Console中输入:

POST /_sql?format=txt
{
  "query": "SELECT * FROM library ORDER BY page_count DESC LIMIT 5"
}

将上述SQL替换为你自己的SQL语句,即可。返回格式如下:

    author      |        name        |  page_count   | release_date
-----------------+--------------------+---------------+------------------------
Peter F. Hamilton|Pandora's Star      |768            |2004-03-02T00:00:00.000Z
Vernor Vinge     |A Fire Upon the Deep|613            |1992-06-01T00:00:00.000Z
Frank Herbert    |Dune                |604            |1965-06-01T00:00:00.000Z

SQL CLI

elasticsearch-sql-cli是安装ES时bin目录的一个脚本文件,也可单独下载。我们在ES目录运行

./bin/elasticsearch-sql-cli https://some.server:9200

输入sql即可查询

sql> SELECT * FROM library WHERE page_count > 500 ORDER BY page_count DESC;
     author      |        name        |  page_count   | release_date
-----------------+--------------------+---------------+---------------
Peter F. Hamilton|Pandora's Star      |768            |1078185600000
Vernor Vinge     |A Fire Upon the Deep|613            |707356800000
Frank Herbert    |Dune                |604            |-144720000000

SQL To DSL

在Kibana输入:

POST /_sql/translate
{
  "query": "SELECT * FROM library ORDER BY page_count DESC",
  "fetch_size": 10
}

即可得到转化后的DSL query:

{
  "size": 10,
  "docvalue_fields": [
    {
      "field": "release_date",
      "format": "epoch_millis"
    }
  ],
  "_source": {
    "includes": [
      "author",
      "name",
      "page_count"
    ],
    "excludes": []
  },
  "sort": [
    {
      "page_count": {
        "order": "desc",
        "missing": "_first",
        "unmapped_type": "short"
      }
    }
  ]
}

因为查询相关的语句已经生成,我们只需要在这个基础上适当修改或不修改就可以愉快使用DSL了。

下面我们详细介绍下ES SQL支持的SQL语句和如何避免错误使用。

首先需要了解下ES SQL支持的SQL语句中,SQL术语和ES术语的对应关系:


ES SQL的语法支持大多遵循ANSI SQL标准,支持的SQL语句有DML查询和部分DDL查询。
DDL查询如:DESCRIBE table,SHOW COLUMNS IN table略显鸡肋,我们主要看下对SELECT,Function的DML查询支持。

SELECT

语法结构如下:

SELECT [TOP [ count ] ] select_expr [, ...]
[ FROM table_name ]
[ WHERE condition ]
[ GROUP BY grouping_element [, ...] ]
[ HAVING condition]
[ ORDER BY expression [ ASC | DESC ] [, ...] ]
[ LIMIT [ count ] ]
[ PIVOT ( aggregation_expr FOR column IN ( value [ [ AS ] alias ] [, ...] ) ) ]

表示从0-N个表中获取行数据。SQL的执行顺序为:

  1. 获取所有 FROM中的关键词,确定表名。
  2. 如果有WHERE条件,过滤掉所有不符合的行。
  3. 如果有GROUP BY条件,则分组聚合;如果有HAVING条件,则过滤聚合的结果。
  4. 上一步得到的结果经过select_expr运算,确定具体返回的数据。
  5. 如果有 ORDER BY条件,会对返回的数据排序。
  6. 如果有 LIMIT or TOP条件,会返回上一步结果的子集。

与常用的SQL有亮点不同,ES SQL 支持TOP [ count ]PIVOT ( aggregation_expr FOR column IN ( value [ [ AS ] alias ] [, ...] ) )子句。
TOP [ count ] :如SELECT TOP 2 first_name FROM emp表示最多返回两条数据,不可与LIMIT条件共用。
PIVOT子句会对其聚合条件得到的结果进行行转列,进一步运算。这个我是没用过,不做介绍。

FUNCTION

基于上面的SQL我们其实已经能有过滤,聚合,排序,分页功能的SQL了。但是我们需要进一步了解ES SQL中FUNCTION的支持,才能写出丰富的具有全文搜索,聚合,分组功能的SQL。
使用SHOW FUNCTIONS 可列举出支持的函数名称和所属类型。

SHOW FUNCTIONS;

      name       |     type
-----------------+---------------
AVG              |AGGREGATE
COUNT            |AGGREGATE
FIRST            |AGGREGATE
FIRST_VALUE      |AGGREGATE
LAST             |AGGREGATE
LAST_VALUE       |AGGREGATE
MAX              |AGGREGATE
MIN              |AGGREGATE
SUM              |AGGREGATE
........

我们主要看下聚合,分组,全文搜索相关的常用函数。
全文匹配函数
MATCH:相当于DSL中的match and multi_match查询。

MATCH(
    field_exp,       --字段名称
    constant_exp,       --字段的匹配值
    [, options])       --可选项

使用举例:

SELECT author, name FROM library WHERE MATCH(author, 'frank');

    author     |       name
---------------+-------------------
Frank Herbert  |Dune
Frank Herbert  |Dune Messiah
SELECT author, name, SCORE() FROM library WHERE MATCH('author^2,name^5', 'frank dune');

    author     |       name        |    SCORE()
---------------+-------------------+---------------
Frank Herbert  |Dune               |11.443176
Frank Herbert  |Dune Messiah       |9.446629

QUERY:相当于DSL中的 query_string 查询。

QUERY(
    constant_exp      --匹配值表达式
    [, options])       --可选项

使用举例:

SELECT author, name, page_count, SCORE() FROM library WHERE QUERY('_exists_:"author" AND page_count:>200 AND (name:/star.*/ OR name:duna~)');

      author      |       name        |  page_count   |    SCORE()
------------------+-------------------+---------------+---------------
Frank Herbert     |Dune               |604            |3.7164764
Frank Herbert     |Dune Messiah       |331            |3.4169943

SCORE():返回输入数据和返回数据的相关度relevance.
使用举例:

SELECT SCORE(), * FROM library WHERE MATCH(name, 'dune') ORDER BY SCORE() DESC;

    SCORE()    |    author     |       name        |  page_count   |    release_date
---------------+---------------+-------------------+---------------+--------------------
2.2886353      |Frank Herbert  |Dune               |604            |1965-06-01T00:00:00Z
1.8893257      |Frank Herbert  |Dune Messiah       |331            |1969-10-15T00:00:00Z

聚合函数
AVG(numeric_field) :计算数字类型的字段的平均值。

SELECT AVG(salary) AS avg FROM emp;

COUNT(expression):返回输入数据的总数,包括COUNT(<field_name>)时field_name对应的值为null的数据。
COUNT(ALL field_name):返回输入数据的总数,不包括field_name对应的值为null的数据。
COUNT(DISTINCT field_name):返回输入数据中field_name对应的值不为null的总数。
SUM(field_name):返回输入数据中数字字段field_name对应的值的总和。
MIN(field_name):返回输入数据中数字字段field_name对应的值的最小值。
MAX(field_name):返回输入数据中数字字段field_name对应的值的最大值。

分组函数

这里的分组函数是对应DSL中的bucket分组。

HISTOGRAM:语法如下:

HISTOGRAM(
           numeric_exp,    --数字表达式,通常是一个field_name
           numeric_interval    --数字的区间值
)

HISTOGRAM(
           date_exp,      --date/time表达式,通常是一个field_name
           date_time_interval      --date/time的区间值
)

如下返回每年1月1号凌晨出生的数据:

ELECT HISTOGRAM(birth_date, INTERVAL 1 YEAR) AS h, COUNT(*) AS c FROM emp GROUP BY h;


           h            |       c
------------------------+---------------
null                    |10
1952-01-01T00:00:00.000Z|8
1953-01-01T00:00:00.000Z|11
1954-01-01T00:00:00.000Z|8
1955-01-01T00:00:00.000Z|4
1956-01-01T00:00:00.000Z|5
1957-01-01T00:00:00.000Z|4
1958-01-01T00:00:00.000Z|7
1959-01-01T00:00:00.000Z|9
1960-01-01T00:00:00.000Z|8
1961-01-01T00:00:00.000Z|8
1962-01-01T00:00:00.000Z|6
1963-01-01T00:00:00.000Z|7
1964-01-01T00:00:00.000Z|4
1965-01-01T00:00:00.000Z|1

ES SQL局限性

因为ES SQL和ES DSL在功能上并非完全匹配,官方文档提到的SQL局限性有:

大的查询可能抛ParsingException

在解析阶段,极大的查询会占用过多的内存,在这种情况下,Elasticsearch SQL引擎将中止解析并抛出错误。

nested类型字段的表示方法

SQL中不支持nested类型的,只能使用

[nested_field_name].[sub_field_name]

这种形式来引用内嵌子字段。
使用举例:

SELECT dep.dep_name.keyword FROM test_emp GROUP BY languages;

nested类型字段不能用在where 和 order by 的Scalar函数上

如以下SQL都是错误

SELECT * FROM test_emp WHERE LENGTH(dep.dep_name.keyword) > 5;

SELECT * FROM test_emp ORDER BY YEAR(dep.start_date);

不支持多个nested字段的同时查询

如嵌套字段nested_A和nested_B无法同时使用。

不支持多个nested字段的同时查询

当分页查询有nested字段时,分页结果可能不正确。这是因为:ES中的分页查询发生在Root nested document上,而不是它的内层字段上。

keyword类型的字段不支持normalizer

不支持数组类型的字段

这是因为在SQL中一个field只对应一个值,这种情况下我们可以使用上面介绍的 SQL To DSL的API 转化为DSL语句,用DSL查询就好了。

聚合排序的限制

  • 排序字段必须是聚合桶中的字段,ES SQL CLI突破了这种限制,但上限不能超过512行,否则在sorting阶段会抛异常。推荐搭配Limit子句使用,如:
SELECT * FROM test GROUP BY age ORDER BY COUNT(*) LIMIT 100;
  • 聚合排序的排序条件不支持Scalar函数或者简单的操作符运算。聚合后的复杂字段(比如包含聚合函数)也是不能用在排序条件上的。

以下是错误例子:

SELECT age, ROUND(AVG(salary)) AS avg FROM test GROUP BY age ORDER BY avg;

SELECT age, MAX(salary) - MIN(salary) AS diff FROM test GROUP BY age ORDER BY diff;

子查询的限制
子查询中包含GROUP BY or HAVING 或者比SELECT X FROM (SELECT ...) WHERE [simple_condition]这种结构复杂,都是可能执行不成功的。

TIME 数据类型的字段不支持GROUP BY条件和HISTOGRAM函数
如以下查询是错误的:

SELECT count(*) FROM test GROUP BY CAST(date_created AS TIME);

SELECT HISTOGRAM(CAST(birth_date AS TIME), INTERVAL '10' MINUTES) as h, COUNT(*) FROM t GROUP BY h

但是将TIME类型的字段包装为Scalar函数返回是支持GROUP BY的,如:

SELECT count(*) FROM test GROUP BY MINUTE((CAST(date_created AS TIME));

返回字段的限制
如果一个字段不在source中存储,是无法查询到的。keyword, date, scaled_float, geo_point, geo_shape这些类型的字段不受这种限制,因为他们不是从_source中返回,而是从docvalue_fields中返回。


本文内容主要参考官方文档7.X版本,文中有错误的地方请帮忙指出,更多内容还请阅读官方文档。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容