Project 2 - Computer Vision - Hybrid Images

This is a class project for CSCI 4527/6527 Computer Vision at George Washington University.

Here is the code.

1. Overview

In this project, we explore hybrid images, which is high-frequency of one overlaid on the low-frequency of another images. Hybrid images are static images that change in interpretation as a function of the viewing distance. The basic idea is that high frequency tends to dominate perception when it is available, but, at a distance, only the low frequency (smooth) part of the signal can be seen. By blending the high-frequency portion of one image with the low-frequency portion of another, you get a hybrid image that leads to different interpretations at different distances. We used the approach described in the SIGGRAPH 2006 paper by Oliva, Torralba, and Schyns.

2. How It Works

Before constructing the hybrid, we first align the images together. Then, we convolve the two images with custom-tuned Gaussian filters. Every pair of images may require different parameters. We calculate the Laplacian of the second image by subtracting the Gaussian-filtered image from the original. The hybrid image is constructed by averaging the first's Gaussian-filtered image with the second's Laplacian image.

The main parameter to tune is the cutoff frequency \sigma_{f}: In order to extract the low frequencies in an image, we convolve the input image with a Gaussian function, which effectively serves as a low-pass filter. Likewise, we extract the high frequencies from an image using a Laplace filter, which I obtained by taking the difference of the input image and the input convolved with a Gaussian.

2.1 Procedure

  1. Align the images. The framework code provided a utility method which would rotate, rescale, and align two images based on two points, typically points of focus to anchor the images.

  2. Apply low-pass filter. Convolve the first input image with a Gaussian filter with sigma chosen based on the desired cutoff frequency as explained above.

  3. Apply high-pass filter. Convolve the second input image with a Laplacian filter with sigma chosen based on the desired cutoff frequency.

  4. Add the results together. This takes the two images and combines them into a single image with the different frequencies.

DerekCat:
image1 = DerekPicture.jpg, image2 = nutmeg.jpg,

sigma1 = 12, sigma2 = 12

Original

Filtered

Hybrid

3. Favorite Result With Analysis

Here is my favorite result where I combined earth with a basketball. You should see basketball looking at close distance and earth when looking from a far distance. I found that sigma = 2 for earth picture and sigma = 12 for basketball picture works the best. Here is the result:



Earth and basketball original images, and their filtered versions, and the hybrid images along with their FFT:










4. Bells and Whistles

I tried few images with black and white, but I don't feel it produces a satisfactory hybrid image. The reason might be as both input images are blurred, having colors helps visualization. Then I try using color to enhance the effect:

Tutankhamun+Zeus: Combine a low-pass-filtered Tutankhamun with a high-pass-filtered Zeus.



最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容

  • +克服拖拖拉拉的惡習,鼓足氣,完全該做的事⋯ +吸引善知識來到我身邊,聽到更多提升自己的念頭,凡事都可感恩! -批...
    ColleenMa阅读 77评论 0 0
  • 对于他,没有特别的喜欢也没有特别的讨厌,习惯于每天定时的通话,天南地北的聊,但又不喜见面,因为我会下意识与心里...
    C_汐阅读 178评论 0 0
  • 在android studio中创建aidl,直接在module上单击右键,选择新建AIDL,则会module的目...
    yangweigbh阅读 2,163评论 0 51