经常听说 Algebra,现在终于知道 Algebra 究竟是什么了:
Algebra (from Arabic "al-jabr" literally meaning "reunion of broken parts") is one of the broad parts of mathematics, together with number theory, geometry and analysis. In its most general form, algebra is the study of mathematical symbols and the rules for manipulating these symbols; it is a unifying thread of almost all of mathematics. As such, it includes everything from elementary equation solving to the study of abstractions such as groups, rings, and fields. The more basic parts of algebra are called elementary algebra; the more abstract parts are called abstract algebra or modern algebra. Elementary algebra is generally considered to be essential for any study of mathematics, science, or engineering, as well as such applications as medicine and economics. Abstract algebra is a major area in advanced mathematics, studied primarily by professional mathematicians.
代数基础
代数基础的介绍(从什么是数,一路介绍下来,很系统):
https://www.youtube.com/watch?v=YW3EDsmj9bo
知识点:
- Z 表示 Zahlen,德语的 numbers,因为康托是德国人,所以也应该是集合论首先用的这样的字符来表示集合
- 有理数是所有可以用分数形式表示的数:n/m
- 代数数是所有多项式方程的可能解的合集
- 代数数包含复数,实数不包含复数,所以代数数和实数不是子集关系
- 复数里面是否包含超越数呢?
- countable 的代数数和 uncountable 的超越数,共同构成实数轴(所以实数是 uncountable 的)
代数的另一个介绍,其中有关于代数理论的基础推导:
https://www.youtube.com/watch?v=8l-La9HEUIU
https://www.youtube.com/watch?v=shEk8sz1oOw
Dedekind cut
当用一个有理数去切实数轴的时候:
在有理数集合的 Dedekind cut 中,如果切出的是无理数,那么实际上是切不到有理数集合的(所以出现了一个 hole):
- 通过 Dedekind cut 的操作,我们可以为任何一个无理数,找到一个有理数的对应
- Dedekind cut 这个概念还没有吃透,回头继续补充~
supermum 和 infimum
- upper bounds 有很多,2、3、4 都是,lower bounds 也有很多,0、-1、-2 等等
- 在 0 < x < 1 的时候,0、1 称为 infimum 和 supermum
- 在 0 ≤ x ≤ 1 的时候,0、1 称为 maximum 和 minimum