SVM和Logistic Regression分别在什么时候使用?

写在前面:简书上搞机器学习的人极少,大都在CSDN上吧。我也在个人博客 http://fighting41love.github.io/#blog 上写了一些文章,苦于只能自我驱动,没有读者,有点难于坚持下去。

所以,自己还是没能免俗,希望有更多人关注和支持。这是我在这里写技术博客的初衷。简书机器学习受众少,也是弊端。但从自己内心来说,不断写文章,就是加大自己的输出,那就必须加大输入,多读书,多总结!经济学领域里所谓的“加大杠杆”。所以,这件事要坚持下去。

SMV和Logistic Regression已经是工业界广泛应用的方法了。
在解决实际问题中,什么时候用SVM?
什么时候用Logistic Regression呢?

Logistice Regression 和 SVM都能解决线性分类问题,也都能解决非线性分类问题(都使用kernel trick即可,只是LR引入kernel没有支持向量的话,计算代价有点高)。在这里我们仅讨论线性分类问题,即Logistic Regression 和 SVM with linear kernel。如果非线性分类,当然首选SVM。

先抛一下Andrew Ng老师在Coursera上《Machine Learning》from stanford的结论:
n: feature 数目 m: sample 数目

以上只是Andrw Ng大神直观的总结,还有一些细节需要讨论:

1. SVM不是概率输出,Logistic Regression是概率输出。

也就是说,当一个新样本来了,SVM只会告诉你它的分类,而Logistic Regression会告诉你它属于某类的概率!
什么意思呢?当你想要知道某个样本属于一个类的概率时,SVM就不适用了。此时,应该使用Logistic Regression。

那么问题来了,点到SVM分类面的距离,是否可以转化为“概率输出”呢,即离分类面越远,其属于该类的概率越大,反之越小呢?《PRML》里确实提过类似的做法,也有一些其他的办法让SVM输出概率,但作者说这些方法都不太实用。

2. 异常点的鲁棒性问题

当训练样本中存在异常点时,由于Logistic Regression的lost function中有每一个点的贡献,所以某种程度上“削弱了”异常点的贡献。而SVM只需要考虑支持向量,此时支持向量本来就不是很多的情况下,几个异常点就很有可能极大影响SVM的表现。

3. 目标函数 lost function

Logistic Regression使用entropy loss,极大化似然函数。
而SVM使用hinge loss, 最大化间隔。两个loss差别不是很大,所以算是一个相同点了。

4. 实际问题:

实际问题中,如果数据量非常大,特征维度很高,使用SVM搞不定时,还是用Logistic Regression吧,速度更快一些。

个人水平有限,如有错误请指出!谢谢!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容