17-长期存活的对象将进入老年代

HotSpot虚拟机中多数收集器都采用了分代收集来管理堆内存, 那内存回收时就必须能决策哪些存活对象应当放在新生代, 哪些存活对象放在老年代中。为做到这点, 虚拟机给每个对象定义了一个对象年龄(Age) 计数器, 存储在对象头中 。对象通常在Eden区里诞生, 如果经过第一次Minor GC后仍然存活, 并且能被Survivor容纳的话, 该对象会被移动到Survivor空间中, 并且将其对象年龄设为1岁。对象在Survivor区中每熬过一次Minor GC, 年龄就增加1岁, 当它的年龄增加到一定程度(默认为15) , 就会被晋升到老年代中。对象晋升老年代的年龄阈值, 可以通过参数-XX:MaxTenuringThreshold设置。

1.MaxTenuringThreshold=1的情况

当我们以-XX:MaxTenuringThreshold=1 记性参数设置时,来执行以下代码:

/**
 * @Des: 长期存活的对象进入老年代的测试
 * VM参数: -verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 -XX:+UseSerialGC
 * -XX:MaxTenuringThreshold=1 :当新生代对象的年龄达到1岁即可进入老年代
 * -XX:+PrintTenuringDistribution:JVM 在每次新生代GC时,打印出幸存区中对象的年龄分布。
 */
public class TestLongObjToOld {
    private static final int _1MB = 1024 * 1024;

    public static void testTenuringThreshold() {
        byte[] allocation1, allocation2, allocation3;
        allocation1 = new byte[_1MB / 4]; //256KB 什么时候进入老年代决定于XX:MaxTenuringThreshold设置
        allocation2 = new byte[4 * _1MB]; //4048KB
        allocation3 = new byte[4 * _1MB];//4048KB eden共占用了 8352KB
        allocation3 = null;  //断开引用,成为垃圾对象
        allocation3 = new byte[4 * _1MB]; //再申请分配4MB内存,放不下,触发Minor GC
    }

    public static void main(String[] args) {
        testTenuringThreshold();
    }
}

输出结果:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:     896768 bytes,     896768 total
: 6079K->875K(9216K), 0.0036167 secs] 6079K->4971K(19456K), 0.0036538 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:        584 bytes,        584 total
: 5056K->0K(9216K), 0.0008881 secs] 9152K->4968K(19456K), 0.0009051 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
Heap
 def new generation   total 9216K, used 4316K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  52% used [0x00000000fec00000, 0x00000000ff037058, 0x00000000ff400000)
  from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400248, 0x00000000ff500000)
  to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)
 tenured generation   total 10240K, used 4968K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  48% used [0x00000000ff600000, 0x00000000ffada120, 0x00000000ffada200, 0x0000000100000000)
 Metaspace       used 3244K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 353K, capacity 388K, committed 512K, reserved 1048576K

针对输出结果我们可以拆分来看,当allocation1和allocation2对象加载的时候,两个对象加在一起是4.25MB,Eden区都能存放下(Eden区大小9216K),没有任何问题,内存图如下:

image

当allocation3对象创建的时候,这时发现eden区空间不足,则会触发第一次GC:

image

我们先来看第一次GC的打印:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:     896768 bytes,     896768 total
: 6079K->875K(9216K), 0.0036167 secs] 6079K->4971K(19456K), 0.0036538 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 

GC:代表发生了一次垃圾回收,前面没有Full修饰,表明这时一次Minor GC;

Allocation Failure:表明本次引起GC的原因是因为在年轻代中没有足够的空间能够存储新的数据了。

6079K->875K(9216K) 三个参数分别为:GC前该内存区域(这里是年轻代)使用容量,GC后该内存区域使用容量,该内存区域总容量。

6079K->4971K(19456K) 三个参数分别为:堆区垃圾回收前的大小,堆区垃圾回收后的大小,堆区总大小。

0.0036167 secs:代表本次新生代GC耗时

那么我们本次日志得出的结论:

  • 该次GC新生代减少了 6079 - 875 = 5204KB
  • Heap区总共减少了 6079 - 4971 = 1108KB
  • 5204KB - 1108KB = 4096KB 代表一共有 4096KB对象从年轻代转移到了老年代

ok,我们通过画图来形象的表示下:

image

这里请大家注意:由于我们的 allocation1对象和allocation2对象都是强引用不会被回收,所以肯定会直接放入幸存者区域,allocation1对象可以放入,但是我们的allocation2对象太大是无法放入S1区的,因此根据我们上面讲的垃圾收集器的默认担保机制,allocation2对象会直接进入到我们的老年代进行存放。 这也解释了为什么最终有4096K(4MB)大小的对象进入了老年代

当第一次GC完后Eden区就有足够的空间存放 allocation3对象了。

我们再来看第二次GC情况:

allocation3 = null; //这行代码一旦执行,那么我们的allotion3对象没有了直接引用者

如下:

image

接着最后一行代码开始执行:

allocation3 = new byte[4 * _1MB]; //再申请分配4MB内存,放不下,触发Minor GC

这次继续申请分配4MB大小对象放入Eden区,那么依然又会存在分配不下触发GC,继续分析如下日志:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age   1:        584 bytes,        584 total
: 5056K->0K(9216K), 0.0008881 secs] 9152K->4968K(19456K), 0.0009051 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

那么我们本次日志得出的结论:

  • 该次GC新生代减少了 5056- 0 = 5056KB
    • 注意:新生代直接减少到了0!代表所有幸存区S1里的对象全部转移到了老年代!(因为我们的年龄阈值设置的刚好就是1)allocation3对象是直接被回收了
  • Heap区总共减少了 9152- 4968= 4184KB
    • 主要就是我们的allocation3对象以及少量系统对象被回收了
  • 5056KB - 4184KB =872 KB 代表一共有 872KB对象从年轻代转移到了老年代

最后内存结果如下:

image

跟我们最后的内存日志结果匹配:

Heap
 def new generation   total 9216K, used 4316K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)
  eden space 8192K,  52% used [0x00000000fec00000, 0x00000000ff037058, 0x00000000ff400000)
  from space 1024K,   0% used [0x00000000ff400000, 0x00000000ff400248, 0x00000000ff500000)
  to   space 1024K,   0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)
 tenured generation   total 10240K, used 4968K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)
   the space 10240K,  48% used [0x00000000ff600000, 0x00000000ffada120, 0x00000000ffada200, 0x0000000100000000)

2.MaxTenuringThreshold=15的情况

代码没有变化,只是JVM参数发生了改变,我们可以直接看运行后的日志结果:

[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 15)
- age   1:     877184 bytes,     877184 total
: 6079K->856K(9216K), 0.0025954 secs] 6079K->4952K(19456K), 0.0026263 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] 
[GC (Allocation Failure) [DefNew
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age   1:        728 bytes,        728 total
: 5037K->0K(9216K), 0.0009100 secs] 9133K->4949K(19456K), 0.0009267 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 

注意:我们神奇的发现:在第二次GC后,新生代的占用空间变成了0!这是尼玛啥情况!我们明明已经设置了阈值为15

这里跟这个对象年龄有另外一个规则可以让对象进入老年代,不用等待15此GC过后才可以。

那么到底是什么规则呢?我想有些同学应该已经猜到了,就是我们的动态年龄判断规则,下一篇文章我们将继续给大家带来动态年龄判断规则以及JVM的空间分配担保机制到底是怎么玩的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容