带你领略算法艺术

什么是算法?

方程不陌生吧?通过解方程来获得正确的未知值。我们就可以把解方程简单的理解为算法。当然算法不仅仅是如此,不着急,我为你娓娓道来。 

先看两段代码:

这两段代码都可以称之为算法,因为分别可以解决两个数相加和从1加到n的问题。算法并不一定要非常复杂,小到一行代码,多到上万行代码,只要能解决特定问题,就是算法。

如何评估算法优劣

使用不同算法,解决同一个问题,效率可能相差非常大

就比如之前所说的几何求证,虽然都能做出来,但方法未必是最好的。

如:

现有两个求斐波那契数(fibonacci number) 的算法

(斐波那契数列:1 1 2 3 5 8 ……)

这里

```java

public static int fib1(int n) {

if (n <= 1) return n;

return fib1(n - 1) + fib1(n - 2);

}

```

```java

public static int fib2(int n) {

if (n <= 1) return n;

int first = 0;

int second = 1;

for (int i = 0; i < n - 1; i++) {

int sum = first + second;

first = second;

second = sum;

}

return second;

}

```

这两个算法哪个更优呢?

如果单从执行效率上进行评估,可能会想到这么一种方案

比较不同算法对同一组输入的执行处理时间

这种方案也叫做:事后统计法

我们的做法是:

```java

public static void main(String[] args) {

int n = 45;//求第45个斐波那契数

TimeTool.check("fib1", new Task() {

public void execute() {

System.out.println(fib1(n));

}

});//5.815秒

TimeTool.check("fib2", new Task() {

public void execute() {

System.out.println(fib2(n));

}

});//0.0秒

}

```

上述方案有比较明显的缺点

执行时间严重依赖硬件以及运行时各种不确定的环境因素

必须编写相应的测算代码

测试数据的选择比较难保证公正性(n=100时可能第一种算法时间更短,n=200时可能第二种算法时间更短)

一般从以下维度来评估算法的优劣

正确性、可读性、健壮性(对不合理输入的反应能力和处理能力)

时间复杂度(time complexity):估算程序指令的执行次数(执行时间)

空间复杂度(space complexity):估算所需占用的存储空间

我们用这种方案评估一下计算1+2+...+n的算法

显然第二种算法更好。难道是因为第二种方法代码更短吗?斐波那契数列的例子已经告诉我们并不是代码越短越好。这个例子中第二个算法只需要三步运算就可以解决问题,而第一种需要循环n次。首先都满足正确性、可读性、健壮性的条件,然后从时间复杂度来讲,假定一步运算的执行时间的一定的,我们考察一下大致需要执行多少次指令,就可以比较出两种算法的时间长短;再从空间复杂度考虑,需要的变量越少、开辟的存储空间越小,算法更好。

大O表示法

一般用大O表示法来描述复杂度,它表示的是数据规模 n 对应的复杂度

方法步骤:

(1)估算时间复杂度/空间复杂度(主要是时间复杂度)

(2.1)忽略常数、系数、低阶

​             $9$>> O(1)

​             $2n+6$ >> O(n)              

​             $n^2+2n+6$ >> O($n^2$)

​             $4n^3+3n^2+22n+100$ >> O($n^3$)

   (2.2)  对数阶一般省略底数

​             $log_2n=log_29+log_9n$ (任意底数的对数可通过乘以一个常数相互转化)

​             所以 $log_2n$、$log_9n$ 统称为 $logn$

注意:大O表示法仅仅是一种粗略的分析模型,是一种估算,能帮助我们短时间内了解一个算法的执行效率

计算下面几段代码的时间复杂度

java

public static void test1(int n) {

    //1(进行一次判断操作)

if (n > 10) {

System.out.println("n > 10");

} else if (n > 5) { // 2

System.out.println("n > 5");

} else {

System.out.println("n <= 5");

}

// 1(定义一次i) + 4(i累加四次) + 4(判断i<4四次) + 4(循环体一条语句执行四次)=9

for (int i = 0; i < 4; i++) {

System.out.println("test");

}

// 大O表示法时间复杂度O(1)

}

java

public static void test2(int n) {

// 1(定义一次i)+ 3n(i累加n次+判断i<n n次+循环体一条语句执行n次)=1+3n

for (int i = 0; i < n; i++) {

System.out.println("test");

}

    // 大O表示法时间复杂度O(n)

}

java

public static void test3(int n) {

// 1(定义一次i) + 2n(i累加n次+判断i<n n次) + n(外层循环体语句执行n次) * (1(定义一次j) + 3n(j累加n次+判断j<n n次+内层循环体一条语句执行n次))=3n^2 + 3n + 1

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

System.out.println("test");

}

}

    // 大O表示法时间复杂度O(n^2)

}

Java

public static void test4(int n) {

// 8 = 2^3

// 16 = 2^4

// 3 = log2(8)

// 4 = log2(16)

// 执行次数 = log2(n)

while ((n = n / 2) > 0) {

System.out.println("test");

}

    // 大O表示法时间复杂度O(logn)

}

java

public static void test5(int n) {

// log5(n)

while ((n = n / 5) > 0) {

System.out.println("test");

}

    // 大O表示法时间复杂度O(logn)

}

java

public static void test7(int n) {

// 1(定义一次i) + 2*log2(n)(i*2运算次数) + log2(n)(外层循环执行次数) * (1 + 3n)(内层循环执行次数)

for (int i = 1; i < n; i = i * 2) {

// 1 + 3n

for (int j = 0; j < n; j++) {

System.out.println("test");

}

}

    // 1 + 3*log2(n) + 2 * nlog2(n)

// 大O表示法时间复杂度O(nlogn)

}

$O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)<O(2n)<O(n!)<O(n^n)$

可以借助函数生成工具对比复杂度的大小

https://zh.numberempire.com/graphingcalculator.php

因为呢,篇幅有限,在此不再过多讲解。总而言之,现今大数据时代,算法的使用和研发越来越受人瞩目。算法也逐渐进入人们的生活,你可能都还没注意到,你所使用的天气预报app,使用的理财软件等等都是通过算法而实现。所以,加油coder!


如果您想提升自己,学习更多算法、高级编程语言技巧,这里有免费的相关学习资料,欢迎加微信:19950277730获取更多技术提升秘籍。这里不仅有志同道合的小伙伴,更有无数免费编程技巧、学习视频和资料,加上微信来一起探讨学习技术吧!!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容

  • 什么是算法? 方程不陌生吧?通过解方程来获得正确的未知值。我们就可以把解方程简单的理解为算法。当然算法不仅仅是如此...
    景如婳阅读 996评论 3 0
  • Java经典问题算法大全 /*【程序1】 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子...
    赵宇_阿特奇阅读 1,841评论 0 2
  • DAY 05 1、 public classArrayDemo { public static void mai...
    周书达阅读 651评论 0 0
  • 回溯算法 回溯法:也称为试探法,它并不考虑问题规模的大小,而是从问题的最明显的最小规模开始逐步求解出可能的答案,并...
    fredal阅读 13,623评论 0 89
  • 百日练:一百天看一百本书第289天加油(ง •̀_•́)ง。加油(ง •̀_•́)ง。 今天,我看了《鲁...
    Auguht阅读 119评论 0 0