代谢组学数据处理软件——NormalizeMets

导读

NormalizeMets是一个R语言集成包,主要用于代谢组学研究中数据的归一化。这个包可以用于去除数据中的噪音,如大样本中存在的共性问题——质谱信号偏移。那么除此之外,这个包还可以进行图形的交互式可视化以及获得一些常规的统计结果,如生物标记物的发现,聚类及PCA分析,分类及相关性分析。

Pipeline

第一步 导入数据

rm(list = ls())
library(NormalizeMets)
data("alldata_eg")
featuredata_eg<-alldata_eg$featuredata

# 1.featuredata is a metabolomics data matrix taking the following format, with metabolites in columns and samples in rows. Unique sample names should be provided as row names.
dataview(featuredata_eg)

# 2.sampledata sampledata is a dataframe that contains sample specific information,行名是
# 样品名,列名是一些协变量信息,如性别、批次、年龄、BMI
sampledata_eg <- alldata_eg$sampledata
dataview(sampledata_eg)

# 3.metabolitedata 包含代谢物的特定信息,比如内标外标或者正负对照,行名是代谢物的名称
# ,其顺序要和featuredata一致
metabolitedata_eg<-alldata_eg$metabolitedata
dataview(metabolitedata_eg)

alldata_eg<-list(featuredata=featuredata_eg, sampledata=sampledata_eg,
                 metabolitedata=metabolitedata_eg)
dataview(alldata_eg$metabolitedata)

第二步 数据处理

1. log转换

代谢组学数据一般都呈现一个偏态分布(右偏),所以需要用一个合适的转换来使得数据的分布变得对称一些

logdata <- LogTransform(featuredata_eg,zerotona=TRUE) # zero=TRUE表示如果存在NA值则用数字0填充

2.缺失值的处理

代谢组学数据中一个常见的问题就是存在缺失值,那么尽可能多的减少缺失值是数据分析前一项非常有必要做的一件事,这里用的填充方法是"k次最近邻算法",或者用矩阵中最小值的"一半"作为缺失值的填充值

imp <-  MissingValues(logdata$featuredata,sampledata_eg,metabolitedata_eg,
                      feature.cutof=0.8, sample.cutoff=0.8, method="knn")

3. 可视化

经过log转换的代谢物丰度数据可以通过诸多方式进行展示,这样可以直观的看出数据的变异情况聚类情况及离异值等

3.a 那么这里用的是根据个体不同批次或者整个代谢物的分布来看代谢物的一个relative log abundance(RLA)图来展示

RlaPlots(imp$featuredata, sampledata_eg[,1], cex.axis = 0.6,saveinteractiveplot = TRUE)
RlaPlots(t(imp$featuredata), groupdata=rep("group",dim(imp$featuredata)[2]),
         cex.axis = 0.6,saveinteractiveplot = TRUE,xlabel="Metabolites")
Fig.1 Rlaplot

3.b pca图,可以用于发现离异值

PcaPlots(imp$featuredata,sampledata_eg[,1],
         scale=FALSE, center=TRUE, multiplot = TRUE, varplot = TRUE)

3.c 热图展示(略)

4. 数据的归一化处理

这个包所采纳的数据归一化方法有4种:1)根据内标;2)根据QC样品;3)标度化方法;4)联合方法

4.a 如何根据QC样品来进行归一化,其是根据QC样品在进样是有规律的插入,然后基于LOESS(locally estimated scatterplot smoothing)信号校正方法,在statTarget包也有介绍。

这里用的是另外一个新的数据集,注意这里的参数lg,应该要在归一化后做log转换,所以lg参数应设置为lg=FALSE,示例方法

# NormQcsamples<- function(featuredata, sampledata, method = c("rlsc"), span = 0,
#                         deg = 2, lg = TRUE, saveoutput = FALSE,
#                         outputname = "qcsample_results", ...)
data(Didata)
dataview(Didata$sampledata)
Norm_rlsc<- NormQcsamples(sampledata=Didata$sampledata[order(Didata$sampledata$order),],
                    featuredata=Didata$featuredata[order(Didata$sampledata$order),],lg=FALSE)

4.b 评估以及选择最佳的归一化方法

通过鉴定生物标记物来评判归一化方法采集线性模型的数据归一化方法,并且能够鉴定与想要研究的目标条件相关的生物标记物

factormat<-model.matrix(~gender +Age +bmi, sampledata_eg)
ruv2Fit<-LinearModelFit(featuredata=imp$featuredata,
                        factormat=factormat,
                        ruv2=TRUE,k=2,
                        qcmets = which(metabolitedata_eg$IS ==1))
# Exploring metabolites associated with age
unadjustedFit<-LinearModelFit(featuredata=imp$featuredata,
                              factormat=factormat,
                              ruv2=FALSE)
Norm_is <-NormQcmets(imp$featuredata, method = "is", 
                     isvec = imp$featuredata[,which(metabolitedata_eg$IS ==1)[1]])
isFit<-LinearModelFit(featuredata=Norm_is$featuredata,
                      factormat=factormat,
                      ruv2=FALSE)
lcoef_age<-list(unadjusted=unadjustedFit$coefficients[,"Age"],
                is_age=isFit$coefficients[,"Age"],
                ruv2_age=ruv2Fit$coefficients[,"Age"])
lpvals_age<-list(unadjusted=unadjustedFit$p.value[,"Age"],
                 is=isFit$p.value[,"Age"],
                 ruv2=ruv2Fit$p.value[,"Age"])
negcontrols<-metabolitedata_eg$names[which(metabolitedata_eg$IS==1)]                   
CompareVolcanoPlots(lcoef=lcoef_age, 
                    lpvals_age, 
                    normmeth = c(":unadjusted", ":is", ":ruv2"),
                    xlab="Coef",
                    negcontrol=negcontrols)
Fig.2 火山图
# 线性模型拟合的残差RLA图
lresiddata<-list(unadjusted=unadjustedFit$residuals,
                 is=isFit$residuals,
                 ruv2=ruv2Fit$residuals)
CompareRlaPlots(lresiddata,groupdata=sampledata_eg$batch,
                yrange=c(-3,3),
                normmeth = c("unadjusted:","is:","ruv2:"))
# 不同方法之间与未校正的数据的比较,venn图
lnames<- list(names(ruv2Fit$coef[,"Age"])[which(ruv2Fit$p.value[,"Age"]<0.05)],
              names(unadjustedFit$coef[,"Age"])[which(unadjustedFit$p.value[,"Age"]<0.05)],
              names(isFit$coef[,"Age"])[which(isFit$p.value[,"Age"]<0.05)])

VennPlot(lnames, group.labels=c("ruv2","unadjusted","is"))
Fig.3 venn图

4.c 用于分类classification

svm<-SvmFit(featuredata=uv_ruvrandclust$featuredata, 
            groupdata=UVdata$sampledata$group,
            crossvalid=TRUE,
            k=5,
            rocplot = TRUE)
Fig.4 ROC图
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容