引用计数算法

前言

相比于前面三种垃圾收集算法,引用计数算法算是实现最简单的了,它只需要一个简单的递归即可实现。现代编程语言比如Lisp,Python,Ruby等的垃圾收集算法采用的就是引用计数算法。现在就让我们来看下引用计数算法(reference counting)是如何工作的。

算法原理

引用计数算法很简单,它实际上是通过在对象头中分配一个空间来保存该对象被引用的次数。如果该对象被其它对象引用,则它的引用计数加一,如果删除对该对象的引用,那么它的引用计数就减一,当该对象的引用计数为0时,那么该对象就会被回收。

比如说,当我们编写以下代码时,

String p = new String("abc")

abc这个字符串对象的引用计数值为1.



而当我们去除abc字符串对象的引用时,则abc字符串对象的引用计数减1

p = null

由此可见,当对象的引用计数为0时,垃圾回收就发生了。这跟前面三种垃圾收集算法不同,前面三种垃圾收集都是在为新对象分配内存空间时由于内存空间不足而触发的,而且垃圾收集是针对整个堆中的所有对象进行的。而引用计数垃圾收集机制不一样,它只是在引用计数变化为0时即刻发生,而且只针对某一个对象以及它所依赖的其它对象。所以,我们一般也称呼引用计数垃圾收集为直接的垃圾收集机制,而前面三种都属于间接的垃圾收集机制。

而采用引用计数的垃圾收集机制跟前面三种垃圾收集机制最大的不同在于,垃圾收集的开销被分摊到整个应用程序的运行当中了,而不是在进行垃圾收集时,要挂起整个应用的运行,直到对堆中所有对象的处理都结束。因此,采用引用计数的垃圾收集不属于严格意义上的"Stop-The-World"的垃圾收集机制。这个也可以从它的伪代码实现中看出:

New(): //分配内存
    ref <- allocate()
    if ref == null
        error "Out of memory"
    rc(ref) <- 0  //将ref的引用计数(reference counting)设置为0
    return ref

atomic Write(dest, ref) //更新对象的引用
    addReference(ref)
    deleteReference(dest)
    dest <- ref

addReference(ref):
    if ref != null
        rc(ref) <- rc(ref)+1
        
deleteReference(ref):
    if ref != null
        rc(ref) <- rc(ref) -1
        if rc(ref) == 0 //如果当前ref的引用计数为0,则表明其将要被回收
            for each fld in Pointers(ref)
                deleteReference(*fld)
            free(ref) //释放ref指向的内存空间

对于上面的伪代码,重点在于理解两点,第一个是当对象的引用发生变化时,比如说将对象重新赋值给新的变量等,对象的引用计数如何变化。假设我们有两个变量p和q,它们分别指向不同的对象,当我们将他们指向同一个对象时,下面的图展示了p和q变量指向的两个对象的引用计数的变化。

String p = new String("abc")
String q = new String("def")
p = q

当我们执行代码p=q时,实际上相当于调用了伪代码中的Write(p,q), 即对p原先指向的对象要进行deleteReference()操作 - 引用计数减一,因为p变量不再指向该对象了,而对q原先指向的对象要进行addReference()操作 - 引用计数加一。

第二点需要理解的是,当某个对象的引用计数减为0时,collector需要递归遍历它所指向的所有域,将它所有域所指向的对象的引用计数都减一,然后才能回收当前对象。在递归过程中,引用计数为0的对象也都将被回收,比如说下图中的phone和address指向的对象。

环形数据问题

但是这种引用计数算法有一个比较大的问题,那就是它不能处理环形数据 - 即如果有两个对象相互引用,那么这两个对象就不能被回收,因为它们的引用计数始终为1。这也就是我们常说的“内存泄漏”问题。比如下图展示的将p变量赋值为null值后所出现的内存泄漏。

后记

到今天为止,四种基本的垃圾收集算法就都介绍完了。每种算法都有它自己的优点和缺点。同时每种基本算法还有它自己的优化算法,但是在这里我只专注于介绍基本的原理,让大家知道它们是怎么工作的,对于它们的优化算法,大家可以自己查阅资料进行学习。后面我们会来看下这几种基本垃圾收集算法怎么组合成更加高级的垃圾收集算法,比如说分代垃圾收集算法等。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 195,980评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,422评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,130评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,553评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,408评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,326评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,720评论 3 386
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,373评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,678评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,722评论 2 312
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,486评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,335评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,738评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,283评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,692评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,893评论 2 335

推荐阅读更多精彩内容

  • 该文章是《垃圾回收算法手册》一书的阅读笔记。详情请参阅原书。 背景 垃圾回收算法中的引用计数算法无法回收环状引用数...
    flycash阅读 4,718评论 0 2
  • 1.什么是垃圾回收? 垃圾回收(Garbage Collection)是Java虚拟机(JVM)垃圾回收器提供...
    简欲明心阅读 89,295评论 17 311
  • 这篇文章是我之前翻阅了不少的书籍以及从网络上收集的一些资料的整理,因此不免有一些不准确的地方,同时不同JDK版本的...
    高广超阅读 15,500评论 3 83
  • Android 自定义View的各种姿势1 Activity的显示之ViewRootImpl详解 Activity...
    passiontim阅读 171,132评论 25 707
  • 好友参加了阿贞老师的家排工坊,这是她非常不容易给自己争取来的机会。她爱人很不支持,但是她铁了心要去,说不清是解决自...
    绽蕊向阳阅读 454评论 0 0