Impala架构和查询原理

题记

本文内容资料来源拉钩教育大数据高薪训练营

Impala与Hive类似不是数据库而是数据分析工具

Impala架构

impala架构.png

Impalad

  • ⻆⾊名称为Impala Daemon,是在每个节点上运⾏的进程,是Impala的核⼼组件,进程名是Impalad;
  • 负责读写数据⽂件,接收来⾃Impala-shell,JDBC,ODBC等的查询请求,与集群其它Impalad分布式并⾏完成查询任务,并将查询结果返回给中⼼协调者。
  • 为了保证Impalad进程了解其它Impalad的健康状况,Impalad进程会⼀直与statestore保持通信。
  • Impalad服务由三个模块组成:Query PlannerQuery CoordinatorQuery Executor,前两个模块组成前端,负责接收SQL查询请求,解析SQL并转换成执⾏计划,交由后端执⾏。

statestored

  • statestore监控集群中Impalad的健康状况,并将集群健康信息同步给Impalad。
  • statestore进程名为statestored。

catalogd

  • Impala执⾏的SQL语句引发元数据发⽣变化时,catalog服务负责把这些元数据的变化同步给其它Impalad进程(⽇志验证,监控statestore进程⽇志)
  • catalogd会在Impala集群启动的时候加载hive元数据信息到Impala,其他时候不会主动加载,需要使用invalidate metadata,refresh命令。
  • catalog服务对应进程名称是catalogd
  • 由于⼀个集群需要⼀个catalogd以及⼀个statestored进程,⽽且catalogd进程所有请求都是经过statestored进程发送,所以官⽅建议让statestored进程与catalogd进程安排同个节点。

Impala查询过程原理

impala查询.png

分析具体流程
1.Client提交任务
Client发送⼀个SQL查询请求到任意⼀个Impalad节点,会返回⼀个queryId⽤于之后的客户端操
作。
2.生成查询计划(单机计划、分布式执行计划)
SQL提交到Impalad节点之后,Analyser依次执⾏SQL的词法分析、语法分析、语义分析等操作;从MySQL元数据库中获取元数据,从HDFS的名称节点中获取数据地址,以得到存储这个查询相关数据的所有数据节点。

  • 单机执行计划:根据上⼀步对SQL语句的分析,由Planner先⽣成单机的执⾏计划,该执⾏计划是有PlanNode组成的⼀棵树,这个过程中也会执⾏⼀些SQL化,例如Join顺序改变谓词下推等。
  • 分布式并⾏物理计划:将单机执⾏计划转换成分布式并⾏物理执⾏计划,物理执⾏计划由⼀个个的Fragment组成,Fragment之间有数据依赖关系,处理过程中要在原有的执⾏计划之上加⼊⼀些ExchangeNode和DataStreamSink信息等。
    • Fragment : sql⽣成的分布式执⾏计划的⼀个⼦任务;
    • DataStreamSink:传输当前的Fragment输出数据到不同的节点;

3.任务调度和分发
Coordinator将Fragment(⼦任务)根据数据分区信息发配到不同的Impalad节点上执⾏。Impalad节点接收到执⾏Fragment请求交由Executor执⾏。
4. Fragment之间的数据依赖
每⼀个Fragment的执⾏输出通过DataStreamSink发送到下⼀个Fragment,Fragment运⾏过程中不断向coordinator节点汇报当前运⾏状态。
5. 结果汇总
查询的SQL通常情况下需要有⼀个单独的Fragment⽤于结果的汇总,它只在Coordinator节点运⾏,将多个节点的最终执⾏结果汇总,转换成ResultSet信息。
6. 获取结果
客户端调⽤获取ResultSet的接⼝,读取查询结果。

单机执行计划

以⼀个SQL例⼦来展示查询计划

select
t1.n1,
t2.n2,
count(1) as c
from t1 join t2 on t1.id = t2.id
join t3 on t1.id = t3.id
where t3.n3 between ‘a’ and ‘f’
group by t1.n1, t2.n2
order by c desc
limit 100;
单机计划.png

分析上图流程:

  1. 第一步去扫描t1表中的需要的数据n1、id列,再扫描t2表需要的数据n2、id列,然后这部分数据进行Join操作。
  2. t1表和t2表关联后,同样的操作,将中间结果表和t3进行关联Join,此处Impala会使用谓词下推优化,只读取需要的数据进行表Join。
  3. 将最后的结果数据进行聚合操作。

分布式执行计划

分布式执行.png

分布式执⾏计划中涉及到多表的Join,Impala会根据表的⼤⼩来决定Join的⽅式,主要有两种分别是HashJoin与Broadcast Join;
上⾯分布式执⾏计划中可以看出T1,T2表⼤⼀些,⽽T3表⼩⼀些,所以对于T1与T2的Join Impala选择使⽤Hash Join,对于T3表选择使⽤Broadcast ⽅式,直接把T3表⼴播到需要Join的节点上。

分布式并⾏计划流程

  1. T1和T2使⽤Hash join,此时需要按照id的值分别将T1和T2分散到不同的Impalad进程,但是相同的id会散列到相同的Impalad进程,这样每⼀个Join之后是全部数据的⼀部分。
  2. T1与T2Join之后的结果数据再与T3表进⾏Join,此时T3表采⽤Broadcast⽅式把⾃⼰全部数据(id列)⼴播到需要的Impala节点上。
  3. T1,T2,T3Join之后再根据Group by执⾏本地的预聚合,每⼀个节点的预聚合结果只是最终结果的⼀部分(不同的节点可能存在相同的group by的值),需要再进⾏⼀次全局的聚合。
  4. 全局的聚合同样需要并⾏,则根据聚合列进⾏Hash分散到不同的节点执⾏Merge运算(其实仍然是⼀次聚合运算),⼀般情况下为了较少数据的⽹络传输, Impala会选择之前本地聚合节点做全局聚合⼯作。
  5. 通过全局聚合之后,相同的key只存在于⼀个节点,然后对于每⼀个节点进⾏排序和TopN计算,最终将每⼀个全局聚合节点的结果返回给Coordinator进⾏合并、排序、limit计算,返回结果给⽤户。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345