iOS 中几种常用的锁总结

多线程编程中,应该尽量避免资源在线程之间共享,以减少线程间的相互作用。 但是总是有多个线程相互干扰的情况(如多个线程访问一个资源)。在线程必须交互的情况下,就需要一些同步工具,来确保当它们交互的时候是安全的。

锁是线程编程同步工具的基础。iOS开发中常用的锁有如下几种:

  1. @synchronized
  2. NSLock 对象锁
  3. NSRecursiveLock 递归锁
  4. NSConditionLock 条件锁
  5. pthread_mutex 互斥锁(C语言)
  6. dispatch_semaphore 信号量实现加锁(GCD)
  7. OSSpinLock (暂不建议使用,原因参见这里

下图是它们的性能对比:

性能表 图1.1
  • ** @synchronized 关键字加锁 互斥锁,性能较差不推荐使用**
 @synchronized(这里添加一个OC对象,一般使用self) {
       这里写要加锁的代码
  }
 注意点
   1.加锁的代码尽量少
   2.添加的OC对象必须在多个线程中都是同一对象
    3.优点是不需要显式的创建锁对象,便可以实现锁的机制。
    4. @synchronized块会隐式的添加一个异常处理例程来保护代码,该处理例程会在异常抛出的时候自动的释放互斥锁。所以如果不想让隐式的异常处理例程带来额外的开销,你可以考虑使用锁对象。

下面通过 卖票的例子 展示使用

    //设置票的数量为5
    _tickets = 5;
    
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
    
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });

- (void)saleTickets
{
    while (1) {
        @synchronized(self) {
            [NSThread sleepForTimeInterval:1];
            if (_tickets > 0) {
                _tickets--;
                NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);
            } else {
                NSLog(@"票卖完了  Thread:%@",[NSThread currentThread]);
                break;
            }
        }
    }
}
控制台打印
  • ** NSLock 互斥锁 不能多次调用 lock方法,会造成死锁**

在Cocoa程序中NSLock中实现了一个简单的互斥锁。
所有锁(包括NSLock)的接口实际上都是通过NSLocking协议定义的,它定义了lockunlock方法。你使用这些方法来获取和释放该锁。

NSLock类还增加了tryLocklockBeforeDate:方法。
tryLock试图获取一个锁,但是如果锁不可用的时候,它不会阻塞线程,相反,它只是返回NO。
lockBeforeDate:方法试图获取一个锁,但是如果锁没有在规定的时间内被获得,它会让线程从阻塞状态变为非阻塞状态(或者返回NO)。

还是卖票的例子

    //设置票的数量为5
    _tickets = 5;
    
    //创建锁
    _mutexLock = [[NSLock alloc] init];
    
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
    
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });

- (void)saleTickets
{

    while (1) {
        [NSThread sleepForTimeInterval:1];
        //加锁
        [_mutexLock lock];
        if (_tickets > 0) {
            _tickets--;
            NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);        
        } else {
            NSLog(@"票卖完了  Thread:%@",[NSThread currentThread]);
            break;
        }
        //解锁
        [_mutexLock unlock];
    }
}
控制台打印
  • ** NSRecursiveLock 递归锁**

使用锁最容易犯的一个错误就是在递归或循环中造成死锁
如下代码中,因为在线程1中的递归block中,锁会被多次的lock,所以自己也被阻塞了

    //创建锁
    _mutexLock = [[NSLock alloc]init];
  
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        static void(^TestMethod)(int);
        TestMethod = ^(int value)
        {
            [_mutexLock lock];
            if (value > 0)
            {
                [NSThread sleepForTimeInterval:1];
                TestMethod(value--);
            }
            [_mutexLock unlock];
        };
        
        TestMethod(5);
    });
    
  

此处将NSLock换成NSRecursiveLock,便可解决问题。
NSRecursiveLock类定义的锁可以在同一线程多次lock,而不会造成死锁。
递归锁会跟踪它被多少次lock。每次成功的lock都必须平衡调用unlock操作。
只有所有的锁住和解锁操作都平衡的时候,锁才真正被释放给其他线程获得。

    //创建锁
    _rsLock = [[NSRecursiveLock alloc] init];
    
   //线程1
    dispatch_async(self.concurrentQueue, ^{
        static void(^TestMethod)(int);
        TestMethod = ^(int value)
        {
            [_rsLock lock];
            if (value > 0)
            {
                [NSThread sleepForTimeInterval:1];
                TestMethod(value--);
            }
            [_rsLock unlock];
        };
        
        TestMethod(5);
    });
  • ** NSConditionLock 条件锁 **

直接看代码和介绍

  //主线程中
    NSConditionLock *theLock = [[NSConditionLock alloc] init];
    
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        for (int i=0;i<=3;i++)
        {
            [theLock lock];
            NSLog(@"thread1:%d",i);
            sleep(1);
            [theLock unlockWithCondition:i];
        }
    });
    
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [theLock lockWhenCondition:2];
        NSLog(@"thread2");
        [theLock unlock];
    });
控制台打印

在线程1中的加锁使用了lock,是不需要条件的,所以顺利的就锁住了。
unlockWithCondition:在开锁的同时设置了一个整型的条件 2 。
线程2则需要一把被标识为2的钥匙,所以当线程1循环到 i = 2 时,线程2的任务才执行。

NSConditionLock也跟其它的锁一样,是需要lock与unlock对应的,只是lock,lockWhenCondition:与unlock,unlockWithCondition:是可以随意组合的,当然这是与你的需求相关的。

  • pthread_mutex 互斥锁
 __block pthread_mutex_t mutex;
    pthread_mutex_init(&mutex, NULL);
    
    //线程1
    dispatch_async(self.concurrentQueue), ^{
        pthread_mutex_lock(&mutex);
        NSLog(@"任务1");
        sleep(2);
        pthread_mutex_unlock(&mutex);
    });
    
    //线程2
    dispatch_async(self.concurrentQueue), ^{
        sleep(1);
        pthread_mutex_lock(&mutex);
        NSLog(@"任务2");
        pthread_mutex_unlock(&mutex);
    });
  • dispatch_semaphore 信号量实现加锁
    GCD中也已经提供了一种信号机制,使用它我们也可以来构建一把”锁”(从本质意义上讲,信号量与锁是有区别,请看互斥锁与信号量的作用与区别):
   // 创建信号量
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(1);
    //线程1
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
         NSLog(@"任务1");
        sleep(10);
        dispatch_semaphore_signal(semaphore);
    });
    
    //线程2
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
        NSLog(@"任务2");
        dispatch_semaphore_signal(semaphore);
    });
  • OSSpinLock

OSSpinLock 在图1.1 中显示的效率最高(暂不建议使用,原因参见这里

  //设置票的数量为5
    _tickets = 5;
    //创建锁
    _pinLock = OS_SPINLOCK_INIT;
    //线程1
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });
    //线程2
    dispatch_async(self.concurrentQueue, ^{
        [self saleTickets];
    });

- (void)saleTickets {
    
        while (1) {
            [NSThread sleepForTimeInterval:1];
            //加锁
            OSSpinLockLock(&_pinLock);
            
            if (_tickets > 0) {
                _tickets--;
                NSLog(@"剩余票数= %ld, Thread:%@",_tickets,[NSThread currentThread]);
                
            } else {
                NSLog(@"票卖完了  Thread:%@",[NSThread currentThread]);
                break;
            }
            //解锁
            OSSpinLockUnlock(&_pinLock);
        }

}
控制台输出
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容