golang实现堆排序

算法题:
给定一个整型数组,将数组的中的元素按升序排序。

基本思路:
操作:排序
输入:无序整型数组
输出:有序整型数组

这里操作采用堆排序算法,堆排序的基本步骤如下:

  1. 将整型数组构造成大顶堆结构
  2. 返回堆顶元素
  3. 减少堆的长度,有如下情形:
    a. 若堆的长度等于0,跳转到第4步
    b. 若堆的长度大于0,跳转到第2步
  4. 返回有序数组

堆排序算法有个关键步骤是构建堆的过程,堆的定义如下:

堆是一个满二叉树,根元素的值大于左右子树所有节点的值,并且左右子树也是一个堆

从堆的定义可以看出,堆的定义是一个递归定义,针对这种递归定义的数据结构,往往会涉及到递归算法。

对于树的构造,一般性的有两种方式,一种是自上而下,另一种是自下而上,至于采用那种方式方便,要依据具体的情况。堆的构造过程是自下而上的方式。这种方式有个好处,每个小堆是否满足堆的性质,只要查看堆顶的元素是否满足堆的性质,如果不满足,可以将根和左右子节点的值进行比较,取得最大的值交换根元素的值,然后继续考虑被交换的位置。这个过程听起来复杂,但是实施起来并不复杂。

常理,到这里就可以进行编码了,但是这里我还是要继续的多讲一些东西。

堆排序算法和其他基本排序算法比起来,它的构造逻辑也是属于简单逻辑,这种逻辑得益于堆的定义,堆是一个满二叉树,也就是说堆可以使用数组进行表示,结点的父子关系可以通过数组的下标运算所得,另外结点之间的关系,可以简化成父节点和左右子节点的关系,父节点的值只要比左右子节点的值大就可以了,而左右子节点所在的左右子树又可以递归的使用这个性质。最重要的是,堆的调整是不需要进行节点调整的(如果你知道红黑树的实现,就可以体会这句话)。

好了,现在我们可以实现堆排序,代码如下:

package main

import "fmt"

// Heap 定义堆排序过程中使用的堆结构
type Heap struct {
    arr  []int   // 用来存储堆的数据
    size int     // 用来标识堆的大小
}

// adjustHeap 用于调整堆,保持堆的固有性质
func adjustHeap(h Heap, parentNode int) {
    leftNode := parentNode*2 + 1
    rightNode := parentNode*2 + 2

    maxNode := parentNode
    if leftNode < h.size && h.arr[maxNode] < h.arr[leftNode] {
        maxNode = leftNode
    }
    if rightNode < h.size && h.arr[maxNode] < h.arr[rightNode] {
        maxNode = rightNode
    }

    if maxNode != parentNode {
        h.arr[maxNode], h.arr[parentNode] = h.arr[parentNode], h.arr[maxNode]
        adjustHeap(h, maxNode)
    }
}

// createHeap 用于构造一个堆
func createHeap(arr []int) (h Heap) {
    h.arr = arr
    h.size = len(arr)

    for i := h.size / 2; i >= 0; i-- {
        adjustHeap(h, i)
    }
    return
}

// heapSort 使用堆对数组进行排序
func heapSort(arr []int) {
    h := createHeap(arr)

    for h.size > 0 {
        // 将最大的数值调整到堆的末尾
        h.arr[0], h.arr[h.size-1] = h.arr[h.size-1], h.arr[0]
        // 减少堆的长度
        h.size--
        // 由于堆顶元素改变了,而且堆的大小改变了,需要重新调整堆,维持堆的性质
        adjustHeap(h, 0)
    }
}

func main() {
    // 测试代码
    arr := []int{9, 8, 7, 6, 5, 1, 2, 3, 4, 0}
    fmt.Println(arr)
    heapSort(arr)
    fmt.Println(arr)
}

最后说一句,程序员想提升自己的编码能力,不仅需要不停的训练,而且还要多多思考。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,242评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,769评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,484评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,133评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,007评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,080评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,496评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,190评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,464评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,549评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,330评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,205评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,567评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,889评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,160评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,475评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,650评论 2 335