最大连续子序列和

最近看到的一道编程题目:

有一个数组,如1, -5, 8, 3, -4, 15, -8,查找其中连续和最大的相邻串的值。在本例中,最大值为8 + 3 + -4 + 15 = 22.

很多人拿到这个题目的第一反应就是很简单啊,动态规划思想很容易搞定,但也有同学像我一样第一次看到这个题目时觉得很难,但我们不要被问题吓倒,先分析看看能不能有啥思路。

首先假设我们已经找到了最大连续和子串在数组中的起始位置(i)和结束位置(j),其中i <= j,即最大和maxSum = a[i] + a[i + 1] + ... + a[j],我们来看看这个子串有什么性质:

1,a[i] > 0,否则我们完全可以去掉a[i]这个元素 而得到一个更大的和;

2, i > 0且a[i - 1] < 0 或 i == 0,下面假设i > 0,这一条性质也是因为如果a[i - 1] > 0的话我们求和时可以加上a[i - 1]这个元素得到一个更大的和;

3, 元素a[i - 1]与它之前的任一元素之间的子串之和sum < 0 ,即对于任何一个m(0 <= m < i - 1),则有a[m] + a[m + 1] + ... + a[i - 1] < 0,这条性质同样可以用反证法证明。

如果一下想不明白上面的第三条性质,可以在纸上用笔画画图看看。根据第二三条性质,我们感觉 a[i - 1]是一个分界点,最大和的子串要么就在a[i - 1]元素之后,要么就在a[i - 1]之前,最大和的子串不可能跨过a[i - 1]这个点。仔细用笔画画图想一下为什么,还是用前面的反证来思考。下面举2个例子来看看:

1,假设数组为 1,-2, 3, 4,5,很容易发现-2这个元素满足前述的第二个和第三个性质:

-2 本身是负数;

-2 + 1 = -1 < 0

所以-2是这样一个分界点,最大和的字串要么在-2之后要么在之前,-2之前的和是1,之后的和sum = 3 + 4 + 5 = 12,所以这个字串的最大和为12;

我们稍微改变一下数组的元素就可以看到最大和字串在分解点之前的情况:

2,假设数组为 100,-101, 3, 4,5,很容易发现-101这个元素满足前述的第二个和第三个性质:

-101 本身是负数;

-101 + 100 = -1 < 0

所以-101是这样一个分界点,最大和的字串要么在-101之后要么在之前,-101之前的和是100,之后的和sum = 3 + 4 + 5 = 12,所以这个字串的最大和为100;

根据前面的分析我们可以得出结论:

只要找到分解点 a[i - 1],最大和的子串要么就在a[i - 1]元素之后,要么就在a[i - 1]之前,最大和的子串不可能跨过a[i - 1]这个点;一个数组中可能有多个这种分界点,但每个分界点都可以把前后完全分开,可以单独算分界点之间的最大和,然后在这些最大和之间取最大值

假设对于数组a,我们找到了两个分界点a[i]和a[j],那么整个数组的最大字串和max(sum(a[0]...a[i-1]), sum(a[i+1]...a[j-1]), sum(a[j+1]...a[len-1]))

那么怎么去找这个分界点呢?我们从前面的第三个性质可以看出如果a[i-1]是分界点,那么a[0]到a[i - 1]之和必定为负数,所以我们就从a[0]开始逐个往后求和,为了便于描述我们把这个和记为sum,sum第一次变成负数时就是我们要找的分界点。可能您会说sum(a[0]...a[i-1])<0并不代表sum(a[m]...a[i-1])<0 (m < i -1)呀?看看找这个分界点的方法,我们是从第一个元素开始求和,分界点是当sum第一次变成负数时找到的元素,也就是说a[0]到a[m-1]之和必定大于0,记为sum1, a[m]到a[i-1]之和记为sum2, 于是有关系sum1 + sum2 = sum < 0 推出sum2 = sum - sum1 < 0.

分析到这里算法基本上就出来了,下面给出python代码:

#!/usr/local/bin/python3.5

def calculateMaxSumOfSubArray(arr):

        sum = 0

        maxSum = 0

        for i in arr:

                sum += i

                if sum < 0: #分界点,重新求和

                        sum = 0

                else:

                        if sum > maxSum:

                                maxSum = sum #记录最大和

return maxSum

#测试

if __name__ == "__main__":

        arr = [1, -5, 8, 3, -4, 15, -8]

        print("max sum is:", calculateMaxSumOfSubArray(arr))

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容