数据埋点是一种常用的数据采集方法。经过不断演化发展,由此所演变出的数据采集方法,已出现很多类型,并各具特点。经过不断演化发展,由此所演变出的数据采集方法,已出现很多类型,并各具特点。
数据埋点的原理是什么?
对基于用户行为的数据平台来说,发生在用户界面的、能获取用户信息的触点就是用户数据的直接来源,而建立这些触点的方式就是数据埋点。当这些触点获取到用户行为、身份数据后,会通过网络传输到服务器端进行后续的处理。
数据埋点从准确性角度考虑,分为客户端埋点和服务端埋点。客户端埋点,即客户操作界面中,在客户产生动作时对用户行为进行记录,这些行为只会在客户端发生,不会传输到服务器端;而服务端埋点则通常是在程序和数据库交互的界面进行埋点,这时的埋点会更准确地记录数据的改变,同时也会减小由于网络传输等原因而带来的不确定性风险。
从分析的角度出发,数据越准确、越全面就越能达到理想状态;但在实际生产过程中却不得不考虑数据采集可行性等问题。由于数据分析工具的最终用户可能是企业内部的各种角色,如工程师、产品运营、市场甚至其他业务人员;大家会在不同时间,在产品不同的模块中,以不同的规则向产品中注入自己关心的采集代码。遵循传统方式,常见工作流程如下:
团队内部还会使用一种表格来搜集各个团队的埋点需求,然后再交给工程师。如下图:
实际上,即使是赫赫有名的数据分析服务商Mixpanel,在很长一段时间内也只能将这种工作流程作为它所建议的最佳实践,甚至不得不花篇幅在文档中心提供了几种不同风格的文档,以此帮助大家熟悉这种工作流程。
为什么要做数据埋点?
互联网应用(网站、APP)在研发时往往不会专门记录用户身份和行为数据,也不会包含专业的数据分析功能。但有时为了分析用户产生某些动作或不产生某些动作的深层原因,就需要详细的用户数据进行分析。这个时候就需要用到专业的用户分析工具以及埋点了。
数据采集是任何一个数据平台的起始动作。对于互联网应用来说,用户行为的捕捉及获取是重中之重。如果没有准确、全面的用户身份和行为数据作为输入,在后续分析中得到准确洞察的可能性就会存在不确定性,营销闭环也会缺少过程数据依据,精细化运营更难以开展。