Apache Spark 统一内存管理模型详解(转)

一、前言

本文将对Spark的内存管理模型进行分析,下面的分析全部是基于 Apache Spark 2.2.1 进行的。为了让下面的文章看起来不枯燥,不打算贴出代码层面的东西。文章仅对统一内存管理模块(UnifiedMemoryManager)进行分析,如对之前的静态内存管理感兴趣,请参阅网上其他文章。

我们都知道 Spark 能够有效的利用内存并进行分布式计算,其内存管理模块在整个系统中扮演着非常重要的角色。为了更好地利用 Spark,深入地理解其内存管理模型具有非常重要的意义,这有助于我们对 Spark 进行更好的调优;在出现各种内存问题时,能够摸清头脑,找到哪块内存区域出现问题。下文介绍的内存模型全部指 Executor 端的内存模型, Driver 端的内存模型本文不做介绍。统一内存管理模块包括了堆内内存(On-heap Memory)和堆外内存(Off-heap Memory)两大区域,下面对这两块区域进行详细的说明。

二、堆内内存(On-heap Memory)

默认情况下,Spark 仅仅使用了堆内内存。Executor 端的堆内内存区域大致可以分为以下四大块:

Execution 内存:主要用于存放 Shuffle、Join、Sort、Aggregation 等计算过程中的临时数据
Storage 内存:主要用于存储 spark 的 cache 数据,例如RDD的缓存、unroll数据;
用户内存(User Memory):主要用于存储 RDD 转换操作所需要的数据,例如 RDD 依赖等信息。
预留内存(Reserved Memory):系统预留内存,会用来存储Spark内部对象。

整个 Executor 端堆内内存如果用图来表示的话,可以概括如下:

我们对上图进行以下说明:

systemMemory = Runtime.getRuntime.maxMemory,其实就是通过参数 spark.executor.memory--executor-memory 配置的。reservedMemory 在 Spark 2.2.1 中是写死的,其值等于 300MB,这个值是不能修改的(如果在测试环境下,我们可以通过 spark.testing.reservedMemory 参数进行修改)usableMemory = systemMemory - reservedMemory,这个就是 Spark 可用内存。

三、堆外内存(Off-heap Memory)

Spark 1.6 开始引入了Off-heap memory(详见SPARK-11389)。这种模式不在 JVM 内申请内存,而是调用 Java 的 unsafe 相关 API 进行诸如 C 语言里面的 malloc() 直接向操作系统申请内存,由于这种方式不进过 JVM 内存管理,所以可以避免频繁的 GC,这种内存申请的缺点是必须自己编写内存申请和释放的逻辑。

默认情况下,堆外内存是关闭的,我们可以通过 spark.memory.offHeap.enabled 参数启用,并且通过 spark.memory.offHeap.size 设置堆外内存大小,单位为字节。如果堆外内存被启用,那么 Executor 内将同时存在堆内和堆外内存,两者的使用互补影响,这个时候 Executor 中的 Execution 内存是堆内的 Execution 内存和堆外的 Execution 内存之和,同理,Storage 内存也一样。相比堆内内存,堆外内存只区分 Execution 内存和 Storage 内存,其内存分布如下图所示:

上图中的 maxOffHeapMemory 等于 spark.memory.offHeap.size 参数配置的。

四、Execution 内存和 Storage 内存动态调整

细心的同学肯定看到上面两张图中的 Execution 内存和 Storage 内存之间存在一条虚线,这是为什么呢?

用过 Spark 的同学应该知道,在 Spark 1.5 之前,Execution 内存和 Storage 内存分配是静态的,换句话说就是如果 Execution 内存不足,即使 Storage 内存有很大空闲程序也是无法利用到的;反之亦然。这就导致我们很难进行内存的调优工作,我们必须非常清楚地了解 Execution 和 Storage 两块区域的内存分布。而目前 Execution 内存和 Storage 内存可以互相共享的。也就是说,如果 Execution 内存不足,而 Storage 内存有空闲,那么 Execution 可以从 Storage 中申请空间;反之亦然。所以上图中的虚线代表 Execution 内存和 Storage 内存是可以随着运作动态调整的,这样可以有效地利用内存资源。Execution 内存和 Storage 内存之间的动态调整可以概括如下:

具体的实现逻辑如下:

  • 程序提交的时候我们都会设定基本的 Execution 内存和 Storage 内存区域(通过 spark.memory.storageFraction 参数设置)
  • 在程序运行时,如果双方的空间都不足时,则存储到硬盘;将内存中的块存储到磁盘的策略是按照 LRU 规则进行的。若己方空间不足而对方空余时,可借用对方的空间;(存储空间不足是指不足以放下一个完整的 Block)
  • Execution 内存的空间被对方占用后,可让对方将占用的部分转存到硬盘,然后"归还"借用的空间
  • Storage 内存的空间被对方占用后,目前的实现是无法让对方"归还",因为需要考虑 Shuffle 过程中的很多因素,实现起来较为复杂;而且 Shuffle 过程产生的文件在后面一定会被使用到,而 Cache 在内存的数据不一定在后面使用。

注意,上面说的借用对方的内存需要借用方和被借用方的内存类型都一样,都是堆内内存或者都是堆外内存,不存在堆内内存不够去借用堆外内存的空间。

五、Task 之间内存分布

为了更好地使用使用内存,Executor 内运行的 Task 之间共享着 Execution 内存。具体的,Spark 内部维护了一个 HashMap 用于记录每个 Task 占用的内存。当 Task 需要在 Execution 内存区域申请 numBytes 内存,其先判断 HashMap 里面是否维护着这个 Task 的内存使用情况,如果没有,则将这个 Task 内存使用置为0,并且以 TaskId 为 key,内存使用为 value 加入到 HashMap 里面。之后为这个 Task 申请 numBytes 内存,如果 Execution 内存区域正好有大于 numBytes 的空闲内存,则在 HashMap 里面将当前 Task 使用的内存加上 numBytes,然后返回;如果当前 Execution 内存区域无法申请到每个 Task 最小可申请的内存,则当前 Task 被阻塞,直到有其他任务释放了足够的执行内存,该任务才可以被唤醒。每个 Task 可以使用 Execution 内存大小范围为 1/2N ~ 1/N,其中 N 为当前 Executor 内正在运行的 Task 个数。一个 Task 能够运行必须申请到最小内存为 (1/2N * Execution 内存);当 N = 1 的时候,Task 可以使用全部的 Execution 内存。

比如如果 Execution 内存大小为 10GB,当前 Executor 内正在运行的 Task 个数为5,则该 Task 可以申请的内存范围为 10 / (2 * 5) ~ 10 / 5,也就是 1GB ~ 2GB的范围。

六、一个示例

为了更好的理解上面堆内内存和堆外内存的使用情况,这里给出一个简单的例子。

只用了堆内内存

现在我们提交的 Spark 作业关于内存的配置如下:
--executor-memory 18g
由于没有设置 spark.memory.fractionspark.memory.storageFraction 参数,我们可以看到 Spark UI 关于 Storage Memory 的显示如下:

上图很清楚地看到 Storage Memory 的可用内存是 10.1GB,这个数是咋来的呢?根据前面的规则,我们可以得出以下的计算:

systemMemory = spark.executor.memory
reservedMemory = 300MB
usableMemory = systemMemory - reservedMemory
StorageMemory= usableMemory * spark.memory.fraction * spark.memory.storageFraction

如果我们把数据代进去,得出以下的结果:

systemMemory = 18Gb = 19327352832 字节
reservedMemory = 300MB = 300 * 1024 * 1024 = 314572800
usableMemory = systemMemory - reservedMemory = 19327352832 - 314572800 = 19012780032
StorageMemory= usableMemory * spark.memory.fraction * spark.memory.storageFraction
= 19012780032 * 0.6 * 0.5 = 5703834009.6 = 5.312109375GB

不对啊,和上面的 10.1GB 对不上啊。为什么呢?这是因为 Spark UI 上面显示的 Storage Memory 可用内存其实等于 Execution 内存和 Storage 内存之和,也就是 usableMemory * spark.memory.fraction

StorageMemory= usableMemory * spark.memory.fraction
= 19012780032 * 0.6 = 11407668019.2 = 10.62421GB

还是不对,这是因为我们虽然设置了 --executor-memory 18g,但是 Spark 的 Executor 端通过 Runtime.getRuntime.maxMemory 拿到的内存其实没这么大,只有 17179869184 字节,所以 systemMemory = 17179869184,然后计算的数据如下:

systemMemory = 17179869184 字节
reservedMemory = 300MB = 300 * 1024 * 1024 = 314572800
usableMemory = systemMemory - reservedMemory = 17179869184 - 314572800 = 16865296384
StorageMemory= usableMemory * spark.memory.fraction
= 16865296384 * 0.6 = 9.42421875 GB

我们通过将上面的 16865296384 * 0.6 字节除于 1024 * 1024 * 1024 转换成 9.42421875 GB,和 UI 上显示的还是对不上,这是因为 Spark UI 是通过除于 1000 * 1000 * 1000 将字节转换成 GB,如下:

systemMemory = 17179869184 字节
reservedMemory = 300MB = 300 * 1024 * 1024 = 314572800
usableMemory = systemMemory - reservedMemory = 17179869184 - 314572800 = 16865296384
StorageMemory= usableMemory * spark.memory.fraction
= 16865296384 * 0.6 字节 =  16865296384 * 0.6 / (1000 * 1000 * 1000) = 10.1GB

现在终于对上了。

我们设置了 --executor-memory 18g,但是 Spark 的 Executor 端通过 Runtime.getRuntime.maxMemory 拿到的内存其实没这么大,只有 17179869184 字节,这个数据是怎么计算的?
Runtime.getRuntime.maxMemory 是程序能够使用的最大内存,其值会比实际配置的执行器内存的值小。这是因为内存分配池的堆部分分为 Eden,Survivor 和 Tenured 三部分空间,而这里面一共包含了两个 Survivor 区域,而这两个 Survivor 区域在任何时候我们只能用到其中一个,所以我们可以使用下面的公式进行描述:

ExecutorMemory = Eden + 2 * Survivor + Tenured
Runtime.getRuntime.maxMemory =  Eden + Survivor + Tenured

上面的 17179869184 字节可能因为你的 GC 配置不一样得到的数据不一样,但是上面的计算公式是一样的。

用了堆内和堆外内存

现在如果我们启用了堆外内存,情况咋样呢?我们的内存相关配置如下:

spark.executor.memory           18g
spark.memory.offHeap.enabled    true
spark.memory.offHeap.size       10737418240

从上面可以看出,堆外内存为 10GB,现在 Spark UI 上面显示的 Storage Memory 可用内存为 20.9GB,如下:

其实 Spark UI 上面显示的 Storage Memory 可用内存等于堆内内存和堆外内存之和,计算公式如下:

堆内
systemMemory = 17179869184 字节
reservedMemory = 300MB = 300 * 1024 * 1024 = 314572800
usableMemory = systemMemory - reservedMemory = 17179869184 - 314572800 = 16865296384
totalOnHeapStorageMemory = usableMemory * spark.memory.fraction
= 16865296384 * 0.6 = 10119177830

堆外

totalOffHeapStorageMemory = spark.memory.offHeap.size = 10737418240
StorageMemory = totalOnHeapStorageMemory + totalOffHeapStorageMemory
= (10119177830 + 10737418240) 字节
= (20856596070 / (1000 * 1000 * 1000)) GB
= 20.9 GB

本文转载于
过往记忆(https://www.iteblog.com/)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345