记一次Flink写入Kafka坑点

最近做了一个将结果数据写入到Kafka的需求,sink部分代码如下:

  1. val kafkaProducer: FlinkKafkaProducer011[String] = new FlinkKafkaProducer011[String](

  2. sinkTopic, new StringKeyedSerializationSchema,producerConfig, sinkSemantic)

  3. ds.addSink(kafkaProducer).setParallelism(sinkParallelism)

其中StringKeyedSerializationSchema是自定义的实现KeyedSerializationSchema的序列化器,用于序列化写入kafka的key/value, 任务也上线了,在flink web页面看到任务各项指标一切正常,也测试消费写入kafka的数据,得到的结果也如预期一样,想着万事大吉了,so easy~
过了一会kafka中间件的同事找过来说:你这个写入topic的数据怎么只有这几个分区,其他分区都没有数据写入~

image

什么情况?任务看着一切都ok啊,怎么就有分区没有数据写入呢?马上google一下数据写入kafka的分区策略:

  1. 如果指定写入分区,就将数据写入分区

  2. 如果没有指定分区,指定了key, 那么就会按照key hash对分区取模方式发送

  3. 如果既没指定分区又没指定key,那么就会以轮序的方式发送

而实际情况是有几个分区一条数据都没有写入,并且在StringKeyedSerializationSchema也指定了每条写入数据的key, 那么就一定是第一种情况了,在FlinkKafkaProducer011中指定了数据写入的分区,马上翻看源码,在FlinkKafkaProducer011的invoke方法里面有这么一个逻辑:

  1. if (flinkKafkaPartitioner != null) {

  2. record = new ProducerRecord<>(

  3. targetTopic,

  4. flinkKafkaPartitioner.partition(next, serializedKey, serializedValue, targetTopic, partitions),

  5. timestamp,

  6. serializedKey,

  7. serializedValue);

  8. } else {

  9. record = new ProducerRecord<>(targetTopic, null, timestamp, serializedKey, serializedValue);

  10. }

很明显就是执行了if逻辑,也是就flinkKafkaPartitioner不为空,在构建ProducerRecord时调用了flinkKafkaPartitioner.partition的方法,指定写入的partition,而flinkKafkaPartitioner是在FlinkKafkaProducer011初始化的时候给的默认值FlinkFixedPartitioner,在看下其partition方式:

  1. partitions[parallelInstanceId % partitions.length]

parallelInstanceId表示当前task的index,partitions表示kafka的topic的分区,该逻辑求得的分区就是根据当前task index 对partition取余得到的,而我设置的sinkParallelism是4,topic的分区数是6,到这里就比较明朗,取余永远不会得到4、5,所以就导致分区4、5一直没有数据写入。如果设置的parallism设置比kafka的分区数还要大,就会导致得到的partition值大于topic实际partition。
那么解决方式有一下几种:

  1. parallism设置成为与kafka topic 分区数一致大小

  2. 将flinkKafkaPartitioner指定为空,并且制定写入kafka的key

  3. 将flinkKafkaPartitioner与写入的key都置为空

  4. 自定义一个FlinkKafkaPartitioner,重写partition方法

最终选择第三种较为简单的方案,修改代码:

  1. val kafkaProducer: FlinkKafkaProducer011[String] = new FlinkKafkaProducer011[String](

  2. sinkTopic, new StringKeyedSerializationSchema,producerConfig,Optional.ofNullable(null), sinkSemantic,5)

同时将StringKeyedSerializationSchema的serializeKey返回值设置为null. 再次运行任务,查看kafka 数据写入情况,所有分区都有数据写入。最终破案。

image
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容

  • 大致可以通过上述情况进行排除 1.kafka服务器问题 查看日志是否有报错,网络访问问题等。 2. kafka p...
    生活的探路者阅读 7,569评论 0 10
  • 在软件项目的生命周期中,开发只占开始的一小部分,大部分时间我们要对项目进行运行维护,Kafka相关的项目也不例外。...
    柴诗雨阅读 8,162评论 0 7
  • 一.Kafka发送消息的整体流程: 步骤:1.ProducerInterceptors对消息进行拦截。2.Seri...
    陈阳001阅读 3,776评论 0 5
  • 一、Kafka简介 Kafka (科技术语)。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规...
    边学边记阅读 1,716评论 0 14
  • Kafka的基本概念 BrokerKafka集群中包含多个服务器,其中每个服务器称为一个broker。有一点需要注...
    frmark阅读 369评论 0 0