2020-05-14

import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
style.use('ggplot')

class Support_Vector_Machine:
    def __init__(self, visualization=True):
        self.visualization = visualization
        self.colors = {1:'r',-1:'b'}
        if self.visualization:
            self.fig = plt.figure()
            self.ax = self.fig.add_subplot(1,1,1)
    # train
    def fit(self, data):
        pass

    def predict(self,features):
        # sign( x.w+b )
        classification = np.sign(np.dot(np.array(features),self.w)+self.b)

        return classification
        
data_dict = {-1:np.array([[1,7],
                          [2,8],
                          [3,8],]),
             
             1:np.array([[5,1],
                         [6,-1],
                         [7,3],])}

我们开始填充fit方法:

    def fit(self, data):
        self.data = data
        # { ||w||: [w,b] }
        opt_dict = {}

        transforms = [[1,1],
                      [-1,1],
                      [-1,-1],
                      [1,-1]]

要注意这个方法首先传递self(记住这是方法的约定),之后传递datadata就是我们我们打算训练或者优化的数据。我们这里,它是data_dict,我们已经创建好了。

我们将self.data设为该数据。现在,我们可以在类中的任何地方引用这个训练数据了(但是,我们需要首先使用数据来调用这个训练方法,来避免错误)。

下面,我们开始构建最优化字典opt_dict,它包含任何最优化的值。随着我们减小我们的w向量,我们会使用约束函数来测试向量,如果存在的话,寻找最大的满足方程的b,之后将所有数据储存在我们的最华友字典中。字典是{ ||w|| : [w,b] }。当我们完成所有优化时,我们会选择字典中键最小的wb值。

最后,我们会设置我们的转换。我们已经解释了我们的意图,来确保我们检查了每个可能的向量版本。

下面,我们需要一些匹配数据的起始点。为此,我们打算首先引用我们的训练数据,来选取一些合适的起始值。

        # finding values to work with for our ranges.
        all_data = []
        for yi in self.data:
            for featureset in self.data[yi]:
                for feature in featureset:
                    all_data.append(feature)

        self.max_feature_value = max(all_data)
        self.min_feature_value = min(all_data)
        # no need to keep this memory.
        all_data=None

我们所做的就是遍历所有数据,寻找最大值和最小值。现在我们打算定义我们的步长。

        step_sizes = [self.max_feature_value * 0.1,
                      self.max_feature_value * 0.01,
                      # starts getting very high cost after this.
                      self.max_feature_value * 0.001]

这里我们设置了一些大小的步长,我们打算这样执行。对于我们的第一遍,我们会采取大跨步(10%)。一旦我们使用这些步长找到了最小值,我们就将步长降至 1% 来调优。我们会继续下降,取决于你想要多么精确。我会在这个项目的末尾讨论,如何在程序中判断是否应该继续优化。

下面,我们打算设置一些变量,来帮助我们给b生成步长(用于生成比w更大的步长,因为我们更在意w的精确度),并跟踪最后一个最优值。

        # extremely expensive
        b_range_multiple = 5
        b_multiple = 5
        latest_optimum = self.max_feature_value*10

现在我们开始了:

        for step in step_sizes:
            w = np.array([latest_optimum,latest_optimum])
            # we can do this because convex
            optimized = False
            while not optimized:
                pass

这里的思想就是沿着向量下降。开始,我们将optimized设为False,并为我们会在每个主要步骤重置它。optimized变量再我们检查所有步骤和凸形状(我们的碗)的底部之后,会设为True

我们下个教程中会继续实现这个逻辑,那里我们会实际使用约束问题来检查值,检查我们是否找到了可以保存的值。

目前为止的代码:

import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
style.use('ggplot')

class Support_Vector_Machine:
    def __init__(self, visualization=True):
        self.visualization = visualization
        self.colors = {1:'r',-1:'b'}
        if self.visualization:
            self.fig = plt.figure()
            self.ax = self.fig.add_subplot(1,1,1)
    # train
    def fit(self, data):
        self.data = data
        # { ||w||: [w,b] }
        opt_dict = {}

        transforms = [[1,1],
                      [-1,1],
                      [-1,-1],
                      [1,-1]]

        all_data = []
        for yi in self.data:
            for featureset in self.data[yi]:
                for feature in featureset:
                    all_data.append(feature)

        self.max_feature_value = max(all_data)
        self.min_feature_value = min(all_data)
        all_data = None

        step_sizes = [self.max_feature_value * 0.1,
                      self.max_feature_value * 0.01,
                      # point of expense:
                      self.max_feature_value * 0.001,]
        
        # extremely expensive
        b_range_multiple = 5
        # 
        b_multiple = 5
        latest_optimum = self.max_feature_value*10

        for step in step_sizes:
            w = np.array([latest_optimum,latest_optimum])
            # we can do this because convex
            optimized = False
            while not optimized:
                pass
            
    def predict(self,features):
        # sign( x.w+b )
        classification = np.sign(np.dot(np.array(features),self.w)+self.b)

        return classification
        


data_dict = {-1:np.array([[1,7],
                          [2,8],
                          [3,8],]),
             
             1:np.array([[5,1],
                         [6,-1],
                         [7,3],])}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343