偏导数
在一元函数中,导数就是函数的变化率。对于二元函数研究它的“变化率”,由于自变量多了一个,情况就要复杂的多。
在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般说来是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。
在这里我们只学习函数 f(x,y) 沿着平行于 x 轴和平行于 y 轴两个特殊方位变动时, f(x,y) 的变化率。
偏导数的表示符号为:∂。
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全微分,全微分(英语:total derivative)是微积分学的一个概念,指多元函数的全增量△z}在其中所有变量都允许变化)记为dz。偏导数在向量分析和微分几何,以及机器学习中是很有用的。
的线性主部,记为{\displaystyle \operatorname {d} z}
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
偏导数如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或。函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。
y方向的偏导
同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。
相关求法
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
几何意义
表示固定面上一点的切线斜率。
偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
注意:
f"xy与f"yx的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 f"xy 与 f"yx 都连续时,求导的结果与先后次序无关。
假设ƒ是一个多元函数。例如:
因为曲面上的每一点都有无穷多条切线,描述这种函数的导数相当困难。偏导数就是选择其中一条切线,并求出它的斜率。通常,最感兴趣的是垂直于y轴(平行于xOz平面)的切线,以及垂直于x轴(平行于yOz平面)的切线。
一种求出这些切线的好办法是把其他变量视为常数。例如,欲求出以上的函数在点(1, 1, 3)的与xOz平面平行的切线。下图显示了函数的图像以及这个平面
下图中显示了函数在平面y = 1上是什么样的。
我们把变量y视为常数,通过对方程求导,我们发现ƒ在点(x, y, z)的。我们把它记为:
于是在点(1, 1, 3)的与xOz平面平行的切线的斜率是3。
在点(1, 1, 3),或称“f在(1, 1, 3)的关于x的偏导数是3”。
定义
函数f可以解释为y为自变量而x为常数的函数:
也就是说,每一个x的值定义了一个函数,记为fx,它是一个一元函数。也就是说:
一旦选择了一个x的值,例如a,那么f(x,y)便定义了一个函数fa,把y映射到a2 + ay + y2:
在这个表达式中,a是常数,而不是变量,因此fa是只有一个变量的函数,这个变量是y。这样,便可以使用一元函数的导数的定义:
以上的步骤适用于任何a的选择。把这些导数合并起来,便得到了一个函数,它描述了f在y方向上的变化:
这就是f关于y的偏导数,在这里,∂是一个弯曲的d,称为偏导数符号。为了把它与字母d区分,∂有时读作“der”、“del”、“dah”或“偏”,而不是“dee”。