一、基于大数据的数据分析方法
基于大数据的数据分析方法的理论基础是数据挖掘和分布式计算原理。大数据具有海量、快速、多样化和有价值四个方面的重要特征,其海量特性使得数据分析是不可能用单台机器完成而是需要多台机器同时运算,也就是所谓的分布式运算。在大数据时代,大数据技术需要解决两个难题:一是海量数据在多台机器上的存储;二是解决如何对多台机器上存储的数据进行计算分析。大数据技术的基本原理还是聚类、分类、主题推荐等数据挖掘算法的内容,在基于大数据的数据分析方法中,有很多方法都是对原有算法的改进,将原来单机实现的算法改成多台机器的分布式计算。简单地说,基于大数据的数据分析方法就是分析工具不一样的数据分析方法,有的也加入了数理统计的思想。
二、大数据分析常用工具一览
1.Hadoop大数据生态平台
Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
2.Spark,大数据分析的“瑞士军刀”
Spark也是Apache基金会的开源项目,它由加州大学伯克利分校的实验室开发,是另外一种重要的分布式计算系统。它在Hadoop的基础上进行了一些架构上的改良。Spark与Hadoop最大的不同点在于,Hadoop使用硬盘来存储数据,而Spark使用内存来存储数据,因此Spark可以提供超过Hadoop100倍的运算速度。但是,由于内存断电后数据会丢失,Spark不能用于处理需要长期保存的数据。目前Spark完成了大部分的数据挖掘算法由单机到分布式的改造,并提供了较方便的数据分析可视化界面。
3.Storm,实时大数据处理工具
Storm是Twitter主推的分布式计算系统,它由BackType团队开发,是Apache基金会的孵化项目。它在Hadoop的基础上提供了实时运算的特性,可以实时地处理大数据流。不同于Hadoop和Spark,Storm不进行数据的收集和存储工作,它直接通过网络实时地接收数据并且实时地处理数据,然后直接通过网络实时地传回结果。
最后要感谢这个优秀的平台,可以让我们相互交流,如果想进一步学习交流,可以加群460570824,希望大家可以一起学习进步!
rB��f8��������