逼真,特别逼真的决策树可视化

同学们好,决策树的可视化,我以为之前介绍的方法已经够惊艳了(决策树可视化,被惊艳到了!),没想到最近又发现了一个更惊艳的,而且更逼真,话不多说,先看效果图↓

image
image

直接绘制随机森林也不在话下

image

下面就向大家介绍一下这个神器 —— pybaobabdt的极简入门用法

安装GraphViz

pybaobabdt依赖GraphViz,首先下载安装包

http://www.graphviz.org/download/

http://www.graphviz.org/download/

2、双击msi文件,然后一直选择next(默认安装路径为C:\Program Files (x86)\Graphviz2.38\),安装完成之后,会在windows开始菜单创建快捷信息。

image

3、配置环境变量:计算机→属性→高级系统设置→高级→环境变量→系统变量→path,在path中加入路径:

image

4、验证:在windows命令行界面,输入dot -version,然后按回车,如果显示如下图所示的graphviz相关版本信息,则安装配置成功。

image

安装pygraphviz和pybaobabdt

pip直接安装pygraphviz的话,大概率会报错,建议下载whl文件本地安装。

https://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz

pybaobabdt就简单了,直接pip install pybaobabdt 即可

pybaobabdt用法

pybaobabdt 用起来也简单到离谱,核心命令只有一个pybaobabdt.drawTree,下面是官方文档示例代码,建议在jupyter-notebook中运行。

import pybaobabdt
import pandas as pd
from scipy.io import arff
from sklearn.tree import DecisionTreeClassifier
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.colors import ListedColormap
from colour import Color
import matplotlib.pyplot as plt
import numpy as np

data = arff.loadarff('vehicle.arff')
df   = pd.DataFrame(data[0])
y = list(df['class'])
features = list(df.columns)

                   
features.remove('class')
X = df.loc[:, features]

clf = DecisionTreeClassifier().fit(X, y)

ax = pybaobabdt.drawTree(clf, size=10, dpi=72, features=features, colormap='Spectral')
image

这个图怎么看呢?

不同的颜色对应不同的分类(target),每个分叉处都标记了分裂的条件,所以划分逻辑一目了然。 树的深度也是工整的体现了出来。

树枝的直径也不是摆设,而是代表了样本的个数(比例),该划分条件下的样本越多,树干也就越粗。

你是发现最最底层的树枝太细太脆弱的时候,是不是应该考虑一下过拟合风险,比如需要调整一下最小样本数?

绘制随机森林

import pybaobabdt
import pandas as pd
from scipy.io import arff
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
data = arff.loadarff('vehicle.arff')

df = pd.DataFrame(data[0])
y = list(df['class'])
features = list(df.columns)
features.remove('class')
X = df.loc[:, features]

clf = RandomForestClassifier(n_estimators=20, n_jobs=-1, random_state=0)
clf.fit(X, y)
size = (15,15)
plt.rcParams['figure.figsize'] = size
fig = plt.figure(figsize=size, dpi=300)

for idx, tree in enumerate(clf.estimators_):
    ax1 = fig.add_subplot(5, 4, idx+1)
    pybaobabdt.drawTree(tree, model=clf, size=15, dpi=300, features=features, ax=ax1)
    
fig.savefig('random-forest.png', format='png', dpi=300, transparent=True)
image

怎么用,是不是很酷,赶紧去试试吧!
如有收获,可否在看、收藏、转发一下?感谢~

https://mp.weixin.qq.com/s/uIazCL9SjNDguu59up5KjA

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容