机器学习基础:案例研究——week 5

#导入数据
import graphlab
song_data = graphlab.SFrame("song_data.gl/")
#查看数据结构
song_data.head()

数据结构如下:

Paste_Image.png

数据由user_id,song_id,listen_count,title,artist,song这几列构成。

  1. Which of the artists below have had the most unique users listening to their songs?('Kanye West,'Foo Fighters,Taylor Swift,Lady GaGa)
print song_data[song_data['artist'] == 'Kanye West']

将artist为Kanye West的数据全部选定,得到如下数据:

Paste_Image.png

然后对用户(user_id)进行统计,这里使用unique()函数,其可以输出其中不重复的用户名

print song_data[song_data['artist'] == 'Kanye West']['user_id'].unique()

这样就将所有用户统计了出来,输入结果如下:

Paste_Image.png
len(song_data[song_data['artist'] == 'Kanye West']['user_id'].unique())

输出结果:2522
对剩下的三人进行重复的操作

len(song_data[song_data['artist'] == 'Foo Fighters']['user_id'].unique())
len(song_data[song_data["artist"] == "Taylor Swift"]["user_id"].unique())
len(song_data[song_data["artist"] == "Lady GaGa"]["user_id"].unique())

输出结果:2055,3246,2928

2 . Which of the artists below is the most popular artist, the one with highest total listen_count, in the data set?

3 .
Which of the artists below is the least popular artist, the one with smallest total listen_count, in the data set?
这里要用到groupby(key_columns, operations, *args)
其可以将关键列按给出的列聚合。
i. key_columns , which takes the column we want to group, in our case, 'artist'
ii. operations , where we define the aggregation operation we using, in our case, we want to sum over the 'listen_count'.

data = song_data.groupby(key_columns='artist', operations={'total_count': graphlab.aggregate.SUM('listen_count')}).sort('total_count', ascending=False)
print data[0]
print data[-1]

输出结果如下:
{'total_count': 43218, 'artist': 'Kings Of Leon'}
{'total_count': 14, 'artist': 'William Tabbert'}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,363评论 0 23
  • 星城,叶落秋凉。宁静的周末,总是被时不时的鞭炮声惊扰,淡淡的思绪,渲染了飘零的梧桐,铺落在远去的街头。一秋又...
    那些年聆听的阅读 201评论 0 0
  • 情人节过去很久了,想起玫瑰。其实节日里我并未收到玫瑰,仅获几本书而已。翻书偶见莎翁十四行诗曰:对天生的尤物我们要求...
    妙云花花阅读 548评论 0 2