1.检测原理
基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法。由于探针序列是根据目标序列进行设计,是确定的,因此,芯片是个相对封闭的系统。换句话说,芯片只能对已知的序列进行检测。
第一代和第二代测序技术除了通量和成本上的差异之外,其测序核心原理(除Solid是边连接边测序之外)都是基于边合成边测序的思想。第二代测序技术的优点是成本较之一代大大下降,通量大大提升,但缺点是所引入PCR过程会在一定程度上增加测序的错误率,并且具有系统偏向性,同时读长也比较短。
第三代测序技术是为了解决第二代所存在的缺点而开发的,与前两代相比,它的根本特点是单分子测序,不需要任何PCR的过程,这是为了能有效避免因PCR偏向性而导致的系统错误,同时提高读长,并要保持二代技术的高通量,低成本的优点。
在测序未普及前,芯片是最常使用的大规模筛查工具,如人基因表达谱芯片,一次实验就可以对人类已知的2~3万个基因进行筛查,找出关键差异基因。我们知道,芯片是基于探针与目标序列杂交结合的原理进行检测。由于探针序列是根据目标序列进行设计,是确定的,因此,芯片是个相对封闭的系统。换句话说,芯片只能对已知的序列进行检测。
2.检测场景
基因测序有相同也有不同的检测场景。比如研究参考序列较丰富物种的表达谱,虽然用芯片和测序都可以,但是用芯片进行定量会更为准确。又比如参考序列较少的物种,要做定量分析,选择测序就更为合适,既能测定序列又能做定量分析。如果想发现新的转录本,或者研究基因表达的可变剪接等,选择测序准没错。也有一些研究,会将两者结合,先用测序获得序列信息,再用芯片进行定量分析,发挥两种手段各自的优势。
基因芯片技术对于已知基因突变的筛查具有明显优势,可以快速、全面地检测出目标基因突变。测序能有效检测致病基因、易感基因位点以及含量极低的突变基因,不仅对于单基因遗传病是一个很好的研究手段,对于许多常见病,如肿瘤、糖尿病等疾病也可进行大规模比较研究。测序对已发生疾病(临床)检出率方面略优于基因芯片。
3.实验周期
相比于测序,无论是实验过程还是数据分析过程,芯片都更为成熟和简单。因而芯片的实验周期通常约为测序的一半时间或者更短。
4.价格
与基因测序相比,基因芯片性价比高,一张基因芯片可以实现mRNA,lncRNA,circRNA不同种类的RNA全基因组检测。
总结重点:
基因芯片只能检测已知基因
高通量测序可以检测到未知基因
参考学习链接:
1.https://mp.weixin.qq.com/s/tWHWA-f1RnP_XWY66p12pg
2.https://www.biowolf.cn/GEOchip/seq_chip.html
3.http://blog.sina.com.cn/s/blog_40d4ae110101fjzy.html
4.https://www.sohu.com/a/109938085_115001