如何进行高维变量筛选和特征选择(一)?Lasso回归

01 模型简介


       随着海量电子病历的挖掘,影像学、基因组学等数据进入医学统计分析,经常会面临对高维变量特征选择的问题,Lasso回归是在线性回归模型的代价函数后面加上L1范数的约束项的模型,它通过控制参数lambda进行变量筛选和复杂度调整,被广泛的用到医学领域。

       目前较好用的拟合广义线性模型的R包是glmnet,由Lasso回归的发明人,斯坦福统计学家 Trevor Hastie 领衔开发。

      下面结合一个线性回归的例子,和大家分享一下如何运用R软件进行Lasso回归。

02 加载数据

R代码1

03 采用glmnet() 建模

R代码2

        alpha=1表示搭建Lasso回归模型,若因变量为连续型因变量则使用family = "gaussian",若为二分类变量则使用family="binomial"。通过plot()可以做图观察模型的系数是如何变化的:图中的每一条曲线代表了每一个自变量系数的变化轨迹,纵坐标是系数值,上横坐标是此时模型中非零系数的个数。蓝色变量随着参数的不断增大,而最终系数被压缩为0的变量,说明比较重要。

图一

04  交叉验证

R代码3

我们都会用交叉验证(cross validation)拟合进而选取模型,同时对模型的性能有一个更准确的估计。这里的type.measure是用来指定交叉验证选取模型时希望最小化的目标参量。当因变量是连续变量的时候,一般会采用"mse",当因变量为二分类变量,可采用"class","deviance"等。

图二

     我们把交叉验证的结果作图,图中红点表示每个lambda对应的目标参量,两条虚线表示特殊的lambda值。打印出来,如下:

R代码4

      min代表的是在所有的lambda值中,是mse最小的那一个值,1se是指在min一个方差范围内得到最简单模型的那一个lambda值,1se给出的是一个具备优良性能且自变量个数最少的模型。

05 变量筛选

     获得最优的lambda值后,就能得到该模型的变量系数和最优的变量。可以看出最终保留下来的变量是3,5,6。coef()中s是指选取的lambda值。

R代码5

 筛选出的变量,可以结合线性回归做下一部分的疾病危险因素分析、预测分析等。

作者介绍:医疗大数据统计分析师,擅长R语言。

欢迎各位关注二维码,在后台留言,恳请斧正!

图三
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342