图解 Java 垃圾回收机制

什么是自动垃圾回收?

自动垃圾回收是一种在堆内存中找出哪些对象在被使用,还有哪些对象没被使用,并且将后者删掉的机制。所谓使用中的对象(已引用对象),指的是程序中有指针指向的对象;而未使用中的对象(未引用对象),则没有被任何指针给指向,因此占用的内存也可以被回收掉。

在用 C 之类的编程语言时,程序员需要自己手动分配和释放内存。而 Java 不一样,它有垃圾回收器,释放内存由回收器负责。本文接下来将介绍垃圾回收机制的基本过程。

我自己是一个从事了6年的Java全栈工程师,最近整理了一套适合2019年学习的Java\大数据资料,从基础的Java、大数据面向对象到进阶的框架知识都有整理哦,可以来我的主页免费领取哦。

第一步:标记

垃圾回收的第一步是标记。垃圾回收器此时会找出哪些内存在使用中,还有哪些不是。

上图中,蓝色表示已引用对象,橙色表示未引用对象。垃圾回收器要检查完所有的对象,才能知道哪些有被引用,哪些没。如果系统里所有的对象都要检查,那这一步可能会相当耗时间。

第二步:清除

这一步会删掉标记出的未引用对象。

内存分配器会保留指向可用内存的引用,以供分配新对象。

压缩

为了提升性能,删除了未引用对象后,还可以将剩下的已引用对象放在一起(压缩),这样就能更简单快捷地分配新对象了。

为什么需要分代垃圾收集?

之前说过,逐一标记和压缩 Java 虚拟机里的所有对象非常低效:分配的对象越多,垃圾回收需时就越久。不过,根据统计,大部分的对象,其实用没多久就不用了。

来看个例子吧。(下图中,竖轴代表已分配的字节,而横轴代表程序运行时间)

上图可见,存活(没被释放)的对象随运行时间越来越少。而图中左侧的那些峰值,也表明了大部分对象其实都挺短命的。

JVM 分代

根据之前的规律,就可以用来提升 JVM 的效率了。方法是,把堆分成几个部分(就是所谓的分代),分别是新生代、老年代,以及永生代。

新对象会被分配在 新生代 内存。一旦新生代内存满了,就会开始对死掉的对象,进行所谓的 小型垃圾回收 过程。一片新生代内存里,死掉的越多,回收过程就越快;至于那些还活着的对象,此时就会老化,并最终老到进入老年代内存。

Stop the World 事件—— 小型垃圾回收属于一种叫 "Stop the World" 的事件。在这种事件发生时,所有的程序线程都要暂停,直到事件完成(比如这里就是完成了所有回收工作)为止。

老年代用来保存长时间存活的对象。通常,设置一个阈值,当达到该年龄时,年轻代对象会被移动到老年代。最终老年代也会被回收。这个事件成为 Major GC。

Major GC 也会触发STW(Stop the World)。通常,Major GC会慢很多,因为它涉及到所有存活对象。所以,对于响应性的应用程序,应该尽量避免Major GC。还要注意,Major GC的STW的时长受年老代垃圾回收器类型的影响。

永久代包含JVM用于描述应用程序中类和方法的元数据。永久代是由JVM在运行时根据应用程序使用的类来填充的。此外,Java SE类库和方法也存储在这里。

如果JVM发现某些类不再需要,并且其他类可能需要空间,则这些类可能会被回收。

世代垃圾收集过程

现在你已经理解了为什么堆被分成不同的代,现在是时候看看这些空间是如何相互作用的。 后面的图片将介绍JVM中的对象分配和老化过程。

首先,将任何新对象分配给 eden 空间。 两个 survivor 空间都是空的。

当 eden 空间填满时,会触发轻微的垃圾收集。

引用的对象被移动到第一个 survivor 空间。 清除 eden 空间时,将删除未引用的对象。

在下一次Minor GC中,Eden区也会做同样的操作。删除未被引用的对象,并将被引用的对象移动到Survivor区。然而,这里,他们被移动到了第二个Survivor区(S1)。此外,第一个Survivor区(S0)中,在上一次Minor GC幸存的对象,会增加年龄,并被移动到S1中。待所有幸存对象都被移动到S1后,S0和Eden区都会被清空。注意,Survivor区中有了不同年龄的对象。

在下一次Minor GC中,会重复同样的操作。不过,这一次Survivor区会交换。被引用的对象移动到S0,。幸存的对象增加年龄。Eden区和S1被清空。

此幻灯片演示了 promotion。 在较小的GC之后,当老化的物体达到一定的年龄阈值(在该示例中为8)时,它们从年轻一代晋升到老一代。

随着较小的GC持续发生,物体将继续被推广到老一代空间。

所以这几乎涵盖了年轻一代的整个过程。 最终,将主要对老一代进行GC,清理并最终压缩该空间。

我自己是一个从事了6年的Java全栈工程师,最近整理了一套适合2019年学习的Java\大数据资料,从基础的Java、大数据面向对象到进阶的框架知识都有整理哦,可以来我的主页免费领取哦。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,711评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,932评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,770评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,799评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,697评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,069评论 1 276
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,535评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,200评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,353评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,290评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,331评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,020评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,610评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,694评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,927评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,330评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,904评论 2 341

推荐阅读更多精彩内容