List的Stream流操作

Stream流

Stream 中文称为 “流”,通过将集合转换为这么一种叫做 “流” 的元素序列,通过声明性方式,能够对集合中的每个元素进行一系列并行或串行的流水线操作。

函数式编程带来的好处尤为明显。这种代码更多地表达了业务逻辑的意图,而不是它的实现机制。易读的代码也易于维护、更可靠、更不容易出错。

面对一对多结构,查询主实体时需要附带主实体的子实体列表怎么写?查出主列表,循环差子列表

List的Stream流操作可以简化我们的代码,减少程序运行的压力,应对上面的问题,以前的话是先查出对应的list数据,然后根据取到集合中id去查找对应的子实体中数据,接着在放入对应的集合中去,key值表示主实体的id,value值表示对应主实体id查到的结合数据,这样就会三次foreach循环组装数据,会很麻烦,当数据量大的时候,会增加程序运行的负荷,造成运行缓慢。所以,流式操作代替我们的这一堆操作,提高了代码的简易性,可维护性,可靠性,更不容易出错。

image.png

列子
首先我们先创建一个 Person 泛型的 List

List<Person> list = new ArrayList<>();
list.add(new Person("jack", 20));
list.add(new Person("mike", 25));
list.add(new Person("tom", 30));

Person 类包含年龄和姓名两个成员变量

private String name;
private int age;
  1. stream() / parallelStream()
    最常用到的方法,将集合转换为流
List list = new ArrayList();
// return Stream<E>
list.stream();

而 parallelStream() 是并行流方法,能够让数据集执行并行操作

  1. filter(T -> boolean)
    保留 boolean 为 true 的元素
保留年龄为 20 的 person 元素
list = list.stream()
            .filter(person -> person.getAge() == 20)
            .collect(toList());

打印输出 [Person{name='jack', age=20}]

collect(toList()) 可以把流转换为 List 类型

  1. distinct()
    去除重复元素,这个方法是通过类的 equals 方法来判断两个元素是否相等的
    如例子中的 Person 类,需要先定义好 equals 方法,不然类似[Person{name='jack', age=20}, Person{name='jack', age=20}] 这样的情况是不会处理的
  2. sorted() / sorted((T, T) -> int)
    如果流中的元素的类实现了 Comparable 接口,即有自己的排序规则,那么可以直接调用 sorted() 方法对元素进行排序,如 Stream<Integer>
    反之, 需要调用 sorted((T, T) -> int) 实现 Comparator 接口
根据年龄大小来比较:
list = list.stream()
           .sorted((p1, p2) -> p1.getAge() - p2.getAge())
           .collect(toList());

当然这个可以简化为

list = list.stream()
           .sorted(Comparator.comparingInt(Person::getAge))
           .collect(toList());
  1. limit(long n)
    返回前 n 个元素
list = list.stream()
            .limit(2)
            .collect(toList());

打印输出 [Person{name='jack', age=20}, Person{name='mike', age=25}]
  1. skip(long n)
    去除前 n 个元素
list = list.stream()
            .skip(2)
            .collect(toList());

打印输出 [Person{name='tom', age=30}]

tips:

用在 limit(n) 前面时,先去除前 m 个元素再返回剩余元素的前 n 个元素
limit(n) 用在 skip(m) 前面时,先返回前 n 个元素再在剩余的 n 个元素中去除 m 个元素

list = list.stream()
            .limit(2)
            .skip(1)
            .collect(toList());

打印输出 [Person{name='mike', age=25}]
  1. map(T -> R)
    将流中的每一个元素 T 映射为 R(类似类型转换)
List<String> newlist = list.stream().map(Person::getName).collect(toList());

newlist 里面的元素为 list 中每一个 Person 对象的 name 变量

  1. flatMap(T -> Stream<R>)
    将流中的每一个元素 T 映射为一个流,再把每一个流连接成为一个流
List<String> list = new ArrayList<>();
list.add("aaa bbb ccc");
list.add("ddd eee fff");
list.add("ggg hhh iii");

list = list.stream().map(s -> s.split(" ")).flatMap(Arrays::stream).collect(toList());

上面例子中,我们的目的是把 List 中每个字符串元素以" "分割开,变成一个新的 List<String>。
首先 map 方法分割每个字符串元素,但此时流的类型为 Stream<String[ ]>,因为 split 方法返回的是 String[ ] 类型;所以我们需要使用 flatMap 方法,先使用Arrays::stream将每个 String[ ] 元素变成一个 Stream<String> 流,然后 flatMap 会将每一个流连接成为一个流,最终返回我们需要的 Stream<String>

  1. anyMatch(T -> boolean)
    流中是否有一个元素匹配给定的 T -> boolean 条件
    是否存在一个 person 对象的 age 等于 20:
boolean b = list.stream().anyMatch(person -> person.getAge() == 20);
  1. allMatch(T -> boolean)
    流中是否所有元素都匹配给定的 T -> boolean 条件
  2. noneMatch(T -> boolean)
    流中是否没有元素匹配给定的 T -> boolean 条件
  3. findAny() 和 findFirst()

findAny():找到其中一个元素 (使用 stream() 时找到的是第一个元素;使用 parallelStream() 并行时找到的是其中一个元素)
findFirst():找到第一个元素

值得注意的是,这两个方法返回的是一个 Optional<T> 对象,它是一个容器类,能代表一个值存在或不存在,这个后面会讲到

  1. reduce((T, T) -> T) 和 reduce(T, (T, T) -> T)
    用于组合流中的元素,如求和,求积,求最大值等
计算年龄总和:
int sum = list.stream().map(Person::getAge).reduce(0, (a, b) -> a + b);
与之相同:
int sum = list.stream().map(Person::getAge).reduce(0, Integer::sum);

其中,reduce 第一个参数 0 代表起始值为 0,lambda (a, b) -> a + b 即将两值相加产生一个新值
同样地:

计算年龄总乘积:
int sum = list.stream().map(Person::getAge).reduce(1, (a, b) -> a * b);

当然也可以

Optional<Integer> sum = list.stream().map(Person::getAge).reduce(Integer::sum);

即不接受任何起始值,但因为没有初始值,需要考虑结果可能不存在的情况,因此返回的是 Optional 类型

  1. count()
    返回流中元素个数,结果为 long 类型
  2. collect()
    收集方法,我们很常用的是 collect(toList()),当然还有 collect(toSet()) 等,参数是一个收集器接口,这个后面会另外讲
  3. forEach()
    返回结果为 void,很明显我们可以通过它来干什么了,比方说:
### 16. unordered()
还有这个比较不起眼的方法,返回一个等效的无序流,当然如果流本身就是无序的话,那可能就会直接返回其本身

打印各个元素:
list.stream().forEach(System.out::println);

再比如说 MyBatis 里面访问数据库的 mapper 方法:

向数据库插入新元素:
list.stream().forEach(PersonMapper::insertPerson);

文章出处
作者:Howie_Y
链接:https://www.jianshu.com/p/0bb4daf6c800
来源:简书

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343