知名度最高的算法之一的KMP算法,压根看不懂

KMP算法应该是每一本《数据结构》书都会讲的,算是知名度最高的算法之一了,但很可惜,很多人压根就没看懂过~~~

更多学习资料Q群:569268376

之后也在很多地方也都经常看到讲解KMP算法的文章,这两天花了点时间总结一下,有点小体会,我希望可以通过我自己的语言来把这个算法的一些细节梳理清楚,给大家发表这篇文章

什么是KMP算法

更多学习资料Q群:569268376

KMP是三位大牛:D.E.Knuth、J.H.Morris和V.R.Pratt同时发现的。其中第一位就是《计算机程序设计艺术》的作者!!

KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。

首先,对于这个问题有一个很单纯的想法:从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?

我们可以这样初始化:

之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致。如果一致就都向后移动,如果不一致,如下图:

A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤:

基于这个想法我们可以得到以下的程序:

/** * 暴力破解法 *@paramts 主串 *@paramps 模式串 *@return如果找到,返回在主串中第一个字符出现的下标,否则为-1 */intbf(char* t,inttlengthchar* p,intplength){inti =0;// 主串的位置intj =0;// 模式串的位置while(i < tlength && j < plength) {if(t[i] == p[j]) {// 当两个字符相同,就比较下一个i++; j++; }else{ i = i - j +1;// 一旦不匹配,i后退j =0;// j归0} }if(j == plength) {returni - j; }else{return-1; }}

上面的程序是没有问题的,但不够好!

(借用数字老师的一句话:我不能说你错,只能说你不对~~~

如果是人为来寻找的话,肯定不会再把i移动回第1位,因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道主串前面只有一个A?因为我们已经知道前面三个字符都是匹配的!(这很重要)。移动过去肯定也是不匹配的!有一个想法,i可以不动,我们只需要移动j即可,如下图:

上面的这种情况还是比较理想的情况,我们最多也就多比较了再次。但假如是在主串“SSSSSSSSSSSSSA”中查找“SSSSB”,比较到最后一个才知道不匹配,然后i回溯,这个的效率是显然是最低的。

大牛们是无法忍受“暴力破解”这种低效的手段的,于是他们三个研究出了KMP算法。其思想就如同我们上边所看到的一样:“利用已经部分匹配这个有效信息,保持i指针不回溯,通过修改j指针,让模式串尽量地移动到有效的位置。”

所以,整个KMP的重点就在于当某一个字符与主串不匹配时,我们应该知道j指针要移动到哪

接下来我们自己来发现j的移动规律:

如图:C和D不匹配了,我们要把j移动到哪?显然是第1位。为什么?因为前面有一个A相同啊:

如下图也是一样的情况:

可以把j指针移动到第2位,因为前面有两个字母是一样的:

至此我们可以大概看出一点端倪,当匹配失败时,j要移动的下一个位置k。存在着这样的性质:最前面的k个字符和j之前的最后k个字符是一样的

如果用数学公式来表示是这样的

P[0 ~ k-1] == P[j-k ~ j-1]

这个相当重要,如果觉得不好记的话,可以通过下图来理解:

弄明白了这个就应该可能明白为什么可以直接将j移动到k位置了。

因为:

当T[i] != P[j]时

有T[i-j ~ i-1] == P[0 ~ j-1]

由P[0 ~ k-1] == P[j-k ~ j-1]

必然:T[i-k ~ i-1] == P[0 ~ k-1]

公式很无聊,能看明白就行了,不需要记住。

这一段只是为了证明我们为什么可以直接将j移动到k而无须再比较前面的k个字符。

好,接下来就是重点了,怎么求这个(这些)k呢?因为在P的每一个位置都可能发生不匹配,也就是说我们要计算每一个位置j对应的k,所以用一个数组next来保存,next[j] = k,表示当T[i] != P[j]时,j指针的下一个位置。

很多教材或博文在这个地方都是讲得比较含糊或是根本就一笔带过,甚至就是贴一段代码上来,为什么是这样求?怎么可以这样求?根本就没有说清楚。而这里恰恰是整个算法最关键的地方。

int* getNext(char *p,intlength) {int*next= (int*)malloc(sizeof(int)*length);next[0] =-1;intj =0;intk =-1;while(j

这个版本的求next数组的算法应该是流传最广泛的,代码是很简洁。可是真的很让人摸不到头脑,它这样计算的依据到底是什么?

好,先把这个放一边,我们自己来推导思路,现在要始终记住一点,next[j]的值(也就是k)表示,当P[j] != T[i]时,j指针的下一步移动位置

先来看第一个:当j为0时,如果这时候不匹配,怎么办?

像上图这种情况,j已经在最左边了,不可能再移动了,这时候要应该是i指针后移。所以在代码中才会有next[0] = -1;这个初始化。

如果是当j为1的时候呢?

显然,j指针一定是后移到0位置的。因为它前面也就只有这一个位置了~~~

下面这个是最重要的,请看如下图:

请仔细对比这两个图。

我们发现一个规律:

当P[k] == P[j]时,

有next[j+1] == next[j] + 1

其实这个是可以证明的:

因为在P[j]之前已经有P[0 ~ k-1] == p[j-k ~ j-1]。(next[j] == k)

这时候现有P[k] == P[j],我们是不是可以得到P[0 ~ k-1] + P[k] == p[j-k ~ j-1] + P[j]。

即:P[0 ~ k] == P[j-k ~ j],即next[j+1] == k + 1 == next[j] + 1。

这里的公式不是很好懂,还是看图会容易理解些。

那如果P[k] != P[j]呢?比如下图所示:

像这种情况,如果你从代码上看应该是这一句:k = next[k];为什么是这样子?你看下面应该就明白了。

现在你应该知道为什么要k = next[k]了吧!像上边的例子,我们已经不可能找到[ A,B,A,B ]这个最长的后缀串了,但我们还是可能找到[ A,B ]、[ B ]这样的前缀串的。所以这个过程像不像在定位[ A,B,A,C ]这个串,当C和主串不一样了(也就是k位置不一样了),那当然是把指针移动到next[k]啦。

有了next数组之后就一切好办了,我们可以动手写KMP算法了:

intKMP(char*t,inttLength,char*p,intpLength+) {inti =0;// 主串的位置intj =0;// 模式串的位置int*next= getNext(ps);while(i < tLength && j < pLength) {if(j == -1|| t[i] == p[j]) {// 当j为-1时,要移动的是i,当然j也要归0i++; j++; }else{// i不需要回溯了// i = i - j + 1;j =next[j];// j回到指定位置} }if(j == pLength) {returni - j; }else{return-1; }}

和暴力破解相比,就改动了4个地方。其中最主要的一点就是,i不需要回溯了。

最后,来看一下上边的算法存在的缺陷。来看第一个例子:

显然,当我们上边的算法得到的next数组应该是[ -1,0,0,1 ]

所以下一步我们应该是把j移动到第1个元素咯:

不难发现,这一步是完全没有意义的。因为后面的B已经不匹配了,那前面的B也一定是不匹配的,同样的情况其实还发生在第2个元素A上。

显然,发生问题的原因在于P[j] == P[next[j]]

所以我们也只需要添加一个判断条件即可:

int* getNext(char *p,intlength) {int*next= (int*)malloc(sizoef(int) *length);next[0] =-1;intj =0;intk =-1;while(j

好了,至此。KMP算法也结束了。

很奇怪,好像不是很难的东西怎么就把大家困住这么久呢?

行文不易,收藏,关注,转发,三连哦

仔细想想还是因为学习太浮躁了,很多东西总是草草应付,很多细节都没弄清楚,就以为自己懂了。结果就只能是似懂非懂的。要学东西真的需要静下心来。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容

  • 字符串匹配KMP算法详解 1. 引言 以前看过很多次KMP算法,一直觉得很有用,但都没有搞明白,一方面是网上很少有...
    张晨辉Allen阅读 2,382评论 0 3
  • 引言 字符串匹配一直是计算机科学领域研究和应用的热门领域,算法的改进研究一直是一个十分困难的课题。作为字符串匹配中...
    潮汐行者阅读 1,624评论 2 6
  • title: 串的模式匹配算法之kmptags: 数据结构与算法之美author: 辰砂tj 1.引言 首先我们需...
    tojian阅读 955评论 0 0
  • 在生死面前,一切都可以忽略不计。面对压倒性的恐惧,所谓的勇气一文不值。 我承认恐惧的存在,但不轻易害怕。充满未知的...
    一席之言阅读 286评论 3 7
  • 2002年6月某日晚上9点,昏暗的灯光照在狭小的出租屋内,让这间房间比起白天的时候看更显得压抑;房间里面除了一张床...
    小生爱采花阅读 538评论 0 1