序
本文主要研究一下rsocket load balancer的Ewma
Moving Average
SMA
SMA(Simple Moving Average
),即简单移动平均,其公式如下:
SMAt = (Pt + Pt-1 + Pt-2 + Pt-3 + ... + Pt-n+1) / n
这里的Pt到为Pt-n+1为最近的n个数据
WMA
WMA(Weighted Moving Average
),即加权移动平均,其公式如下:
WMAt = (Pt * Wt) + (Pt-1 * Wt-1) + ... + (Pt-n+1 * Wt-n+1)
WMA会给最近的n个数据加上权重,其中这些权重加起来和为1,一般是较近的数据权重比较大
EMA或EWMA
EMA(Exponentially Moving Average
)指数移动平均或EWMA(Exponentially Weighted Moving Average
)指数加权移动平均,其公式如下:
EMAt = (Pt * S) + (1- S) * EMAt-1
它有一个S参数为平滑指数,一般是取2/(N+1)
Ewma
rsocket-load-balancer-0.12.1-sources.jar!/io/rsocket/stat/Ewma.java
public class Ewma {
private final long tau;
private volatile long stamp;
private volatile double ewma;
public Ewma(long halfLife, TimeUnit unit, double initialValue) {
this.tau = Clock.unit().convert((long) (halfLife / Math.log(2)), unit);
stamp = 0L;
ewma = initialValue;
}
public synchronized void insert(double x) {
long now = Clock.now();
double elapsed = Math.max(0, now - stamp);
stamp = now;
double w = Math.exp(-elapsed / tau);
ewma = w * ewma + (1.0 - w) * x;
}
public synchronized void reset(double value) {
stamp = 0L;
ewma = value;
}
public double value() {
return ewma;
}
@Override
public String toString() {
return "Ewma(value=" + ewma + ", age=" + (Clock.now() - stamp) + ")";
}
}
- Ewma的构造器需要指定halfLife、timeunit、initialValue(
ewma初始值
)参数;ewma = w * ewma + (1.0 - w) * x,其中x为当前值,w为权重 - 权重w = Math.exp(-elapsed / tau),即e的-elapsed / tau次方;elapsed为距离上次计算的时间长度;tau(
希腊字母
)为EWMA的时间常量 - 这里的tau = halfLife / Math.log(2)根据timeunit转换后的值;其中halfLife参数,代表speed of convergence,即收敛的速度
RSocketSupplier
rsocket-load-balancer-0.12.1-sources.jar!/io/rsocket/client/filter/RSocketSupplier.java
public class RSocketSupplier implements Availability, Supplier<Mono<RSocket>>, Closeable {
private static final double EPSILON = 1e-4;
private Supplier<Mono<RSocket>> rSocketSupplier;
private final MonoProcessor<Void> onClose;
private final long tau;
private long stamp;
private final Ewma errorPercentage;
public RSocketSupplier(Supplier<Mono<RSocket>> rSocketSupplier, long halfLife, TimeUnit unit) {
this.rSocketSupplier = rSocketSupplier;
this.tau = Clock.unit().convert((long) (halfLife / Math.log(2)), unit);
this.stamp = Clock.now();
this.errorPercentage = new Ewma(halfLife, unit, 1.0);
this.onClose = MonoProcessor.create();
}
public RSocketSupplier(Supplier<Mono<RSocket>> rSocketSupplier) {
this(rSocketSupplier, 5, TimeUnit.SECONDS);
}
@Override
public double availability() {
double e = errorPercentage.value();
if (Clock.now() - stamp > tau) {
// If the window is expired artificially increase the availability
double a = Math.min(1.0, e + 0.5);
errorPercentage.reset(a);
}
if (e < EPSILON) {
e = 0.0;
} else if (1.0 - EPSILON < e) {
e = 1.0;
}
return e;
}
private synchronized void updateErrorPercentage(double value) {
errorPercentage.insert(value);
stamp = Clock.now();
}
@Override
public Mono<RSocket> get() {
return rSocketSupplier
.get()
.doOnNext(o -> updateErrorPercentage(1.0))
.doOnError(t -> updateErrorPercentage(0.0))
.map(AvailabilityAwareRSocketProxy::new);
}
@Override
public void dispose() {
onClose.onComplete();
}
@Override
public boolean isDisposed() {
return onClose.isDisposed();
}
@Override
public Mono<Void> onClose() {
return onClose;
}
private class AvailabilityAwareRSocketProxy extends RSocketProxy {
public AvailabilityAwareRSocketProxy(RSocket source) {
super(source);
onClose.doFinally(signalType -> source.dispose()).subscribe();
}
@Override
public Mono<Void> fireAndForget(Payload payload) {
return source
.fireAndForget(payload)
.doOnError(t -> errorPercentage.insert(0.0))
.doOnSuccess(v -> updateErrorPercentage(1.0));
}
@Override
public Mono<Payload> requestResponse(Payload payload) {
return source
.requestResponse(payload)
.doOnError(t -> errorPercentage.insert(0.0))
.doOnSuccess(p -> updateErrorPercentage(1.0));
}
@Override
public Flux<Payload> requestStream(Payload payload) {
return source
.requestStream(payload)
.doOnError(th -> errorPercentage.insert(0.0))
.doOnComplete(() -> updateErrorPercentage(1.0));
}
@Override
public Flux<Payload> requestChannel(Publisher<Payload> payloads) {
return source
.requestChannel(payloads)
.doOnError(th -> errorPercentage.insert(0.0))
.doOnComplete(() -> updateErrorPercentage(1.0));
}
@Override
public Mono<Void> metadataPush(Payload payload) {
return source
.metadataPush(payload)
.doOnError(t -> errorPercentage.insert(0.0))
.doOnSuccess(v -> updateErrorPercentage(1.0));
}
@Override
public double availability() {
// If the window is expired set success and failure to zero and return
// the child availability
if (Clock.now() - stamp > tau) {
updateErrorPercentage(1.0);
}
return source.availability() * errorPercentage.value();
}
}
}
- RSocketSupplier实现了Availability、Supplier、Closeable接口,其中它定义了errorPercentage变量,其类型为Ewma;如果没有指定halfLife值,则RSocketSupplier默认halfLife为5秒,ewma的初始值为1.0
- RSocketSupplier定义了一个常量EPSILON = 1e-4,其availability方法会先计算availability,然后在距离上次计算时间stamp超过tau值时会重置errorPercentage;之后当availability小于EPSILON时返回0,当availability + EPSILON大于1时返回1.0
- updateErrorPercentage方法用于往ewma插入新值,同时更新stamp;get方法的doOnNext方法updateErrorPercentage值为1.0,doOnError方法updateErrorPercentage值为0.0;map会将RSocket转换为AvailabilityAwareRSocketProxy;AvailabilityAwareRSocketProxy对目标RSocket进行代理,对相关方法的doOnError及doOnSuccess都织入errorPercentage的统计
小结
- Moving Average有好几种算法,包括SMA(
Simple Moving Average
)、WMA(Weighted Moving Average
)、EMA(Exponentially Moving Average
)或EWMA(Exponentially Weighted Moving Average
) - Ewma的构造器需要指定halfLife、timeunit、initialValue(
ewma初始值
)参数;ewma = w * ewma + (1.0 - w) * x,其中x为当前值,w为权重;权重w = Math.exp(-elapsed / tau),即e的-elapsed / tau次方;elapsed为距离上次计算的时间长度;tau(希腊字母
)为EWMA的时间常量;这里的tau = halfLife / Math.log(2)根据timeunit转换后的值;其中halfLife参数,代表speed of convergence,即收敛的速度 - rsocket load balancer使用了Ewma了统计服务的availability;其中RSocketSupplier实现了Availability、Supplier、Closeable接口,其中它定义了errorPercentage变量,其类型为Ewma;如果没有指定halfLife值,则RSocketSupplier默认halfLife为5秒,ewma的初始值为1.0;RSocketSupplier的get方法会将RSocket转换为AvailabilityAwareRSocketProxy,而AvailabilityAwareRSocketProxy则会对目标RSocket进行代理,对相关方法的doOnError及doOnSuccess都织入errorPercentage的统计
doc
- Simple Moving Average - SMA Definition
- Weighted Moving Averages: The Basics
- Exponential Moving Average - EMA Definition
- How Is the Exponential Moving Average (EMA) Formula Calculated?
- Moving Average, Weighted Moving Average, and Exponential Moving Average
- Exploring the Exponentially Weighted Moving Average
- EWMA 移动平均模型
- rsocket EWMA