2.2 图像分类:k-最近邻算法

图像分类的正确与否取决于它的最近邻值,可以看到KNN的表现效果不是很好,但如果我们使用一个更大的k值,可能会对噪音产生更大的鲁棒性。
当我们使用k-近邻算法时,确定我们应该如何比较相对近邻数据距离值图片间的不同,上节的L1 方法是像素之间绝对值的总和;另一种常见的选择是L2距离,也就是欧氏距离,即取平方和的平方根,并把这个作为距离。
L2距离实际上是一个根据L1距离的这个围绕着原点的方形形成的圆。这个方形上的每一个点在L1上是与原点等距的,而在L2上类似的会是一个圆。L1距离取决于你选的坐标系统,所以如果转动坐标轴,将会改变点之间的L1距离,而改变坐标轴对L2距离毫无影响。

image.png

如果你输入的一些特征向量,如果向量中的一些值有一些重要的意义,L1可能更合适,但如果它只是某个空间中的一个通用向量,L2可能更自然些。通过使用不同的距离度量,可以将k-近邻分类器泛化到许多不同的数据类型上,不仅仅是向量,图片。

设定超参的一个方法是 将数据集划分为训练集,验证集,测试集3部分,在训练集上设置不同的参数训练分类器,在验证集上选择效果最好的超参的分类器,然后在测试集上进行测试,查看这个分类器在新的数据集上是否效果最佳。

image.png

另一个方法是交叉验证法。这在小数据集中更常用一些。
image.png

实际上,KNN在图像分类中很少用到,一个是因为他在测试时运算时间很长,同需求不符,另一个是因为L1或L2距离度量用在比较图像上实在不太合适,这种向量化的函数不太适合表示图像之间视觉的相似度。
那么,如何区分图像间的不同呢?
KNN介绍了图像分类的基本思路,借助训练集的图片和相应的标记我们可以预测测试集中数据的分类。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容