Apriori算法的初步学习(简单易懂的例子!)

又来记录学习了鸭~好记性不如烂笔头 记录除了可以更好地学习 其次就是可以发现自己之前的理解是否出错了!


首先,Apriori算法是关联规则挖掘中很基础也很经典的一个算法。

所以做如下补充:

关联规则:形如X→Y的蕴涵式,其中, X和Y分别称为关联规则的先导(antecedent或left-hand-side, LHS)和后继(consequent或right-hand-side, RHS) 。其中,关联规则XY,存在支持度和信任度。

支持度:规则前项LHS和规则后项RHS所包括的商品都同时出现的概率,可以理解为LHS和RHS商品的交易次数/总交易次数。

置信度:在所有的购买了左边商品的交易中,同时又购买了右边商品的交易机率,包含规则两边商品的交易次数/包括规则左边商品的交易次数。

提升度:(有这个规则和没有这个规则是否概率会提升,规则是否有价值):无任何约束的情况下买后项的交易次数/置信度。注意:提升度必须大于1才有意义


进入正题啦~

Apriori的算法思想

在Apriori算法z中,我们通常使用支持度来作为我们判断频繁项集的标准。

Apriori算法的目标是找到最大的K项频繁集

补充:{频繁项集产生:其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集(frequent itemset)}

Apriori定律1:如果一个集合是频繁项集,则它的所有子集都是频繁项集。

举个栗子:假设一个集合{A,B}是频繁项集,即A、B同时出现在一条记录的次数大于等于最小支持度min_support,则它的子集{A},{B}出现次数必定大于等于min_support,即它的子集都是频繁项集。

Apriori定律2:如果一个集合不是频繁项集,则它的所有超集都不是频繁项集。

举个栗子:假设集合{A}不是频繁项集,即A出现的次数小于 min_support,则它的任何超集如{A,B}出现的次数必定小于min_support,因此其超集必定也不是频繁项集。


Apriori的算法步骤

输入:数据集合D,支持度阈值α

    输出:最大的频繁k项集

    1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。

    2)挖掘频繁k项集

      a) 扫描数据计算候选频繁k项集的支持度

      b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集为空,则直接返回频繁k-1项集的集合作为算法结果,算法结束。如果得到的频繁k项集只有一项,则直接返回频繁k项集的集合作为算法结果,算法结束。

      c) 基于频繁k项集,连接生成候选频繁k+1项集。

    3) 令k=k+1,转入步骤2。


敲脑壳 重点来啦~

Apriori的算法的应用

下面这个表格是代表一个事务数据库D,

其中最小支持度为50%,最小置信度为70%,求事务数据库中的频繁关联规则。

 apriori算法的步骤如下所示:

  (1)生成候选频繁1-项目集C1={{面包},{牛奶},{啤酒},{花生},{尿布}}。

  (2)扫描事务数据库D,计算C1中每个项目集在D中的支持度。从事务数据库D中可以得出每个项目集的支持数分别为3,3,3,1,2,事务数据库D的项目集总数为4,因此可得出C1中每个项目集的支持度分别为75%,75%,75%,25%,50%。根据最小支持度为50%,可以得出频繁1-项目集L1={{面包},{牛奶},{啤酒},{尿布}}。

  (3)根据L1生成候选频繁2-项目集C2={{面包,牛奶},{面包,啤酒},{面包,尿布},{牛奶,啤酒},{牛奶,尿布},{啤酒,尿布}}。

  (4)扫描事务数据库D,计算C2中每个项目集在D中的支持度。从事务数据库D中可以得出每个项目集的支持数分别为3,2,1,2,1,2,事务数据库D的项目集总数为4,因此可得出C2中每个项目集的支持度分别为75%,50%,25%,50%,25%,50%。根据最小支持度为50%,可以得出频繁2-项目集L2={{面包,牛奶},{面包,啤酒},{牛奶,啤酒},{啤酒,尿布}}。

  (5)根据L2生成候选频繁3-项目集C3={{面包,牛奶,啤酒},{面包,牛奶,尿布},{面包,啤酒,尿布},{牛奶,啤酒,尿布}},由于C3中项目集{面包,牛奶,尿布}中的一个子集{牛奶,尿布}是L2中不存在的,因此可以去除。同理项目集{面包,啤酒,尿布}、{牛奶,啤酒,尿布}也可去除。因此C3={面包,牛奶,啤酒}。

  (6)扫描事务数据库D,计算C3中每个项目集在D中的支持度。从事务数据库D中可以得出每个项目集的支持数分别为2,事务数据库D的项目集总数为4,因此可得出C2中每个项目集的支持度分别为50%。根据最小支持度为50%,可以得出频繁3-项目集L3={{面包,牛奶,啤酒}}。

  (7)L=L1UL2UL3={{面包},{牛奶},{啤酒},{尿布},{面包,牛奶},{面包,啤酒},{牛奶,啤酒},{啤酒,尿布},{面包,牛奶,啤酒}}。

  (8)我们只考虑项目集长度大于1的项目集,例如{面包,牛奶,啤酒},它的所有非真子集{面包},{牛奶},{啤酒},{面包,牛奶},{面包,啤酒},{牛奶,啤酒},分别计算关联规则{面包}—>{牛奶,啤酒},{牛奶}—>{面包,啤酒},{啤酒}—>{面包,牛奶},{面包,牛奶}—>{啤酒},{面包,啤酒}—>{牛奶},{牛奶,啤酒}—>{面包}的置信度,其值分别为67%,67%,67%,67%,100%,100%。由于最小置信度为70%,可得},{面包,啤酒}—>{牛奶},{牛奶,啤酒}—>{面包}为频繁关联规则。也就是说买面包和啤酒的同时肯定会买牛奶,买牛奶和啤酒的同时也是会买面包。

由这个例子可以看出apriori主要是根据 最小支持度来判断的 逐步递进

but~这其中也有一些缺点: 从算法的步骤可以看出,Aprior算法每轮迭代都要扫描数据集,因此在数据集很大,数据种类很多的时候,算法效率很低。

参考:关于apriori算法的一个简单的例子 - 宁静之家 - 博客园


附相关解释图:

终于~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容

  • FpGrowth算法通过构造一个树结构来压缩数据记录,使得挖掘频繁项集只需要扫描两次数据记录,而且该算法不需要生成...
    山的那边是什么_阅读 6,398评论 2 6
  • 单选题 1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A) A...
    山的那边是什么_阅读 33,420评论 2 59
  • 王小波在《黄金时代》里写过这样一句话: 那一天我二十一岁,在我一生的黄金时代。我有好多奢望。我想爱,想吃,还想在一...
    儒将阅读 159评论 0 0
  • 1-做真实的自己 “在某一阶段上,自己的思想感情有了偏颇,甚至错误,绝不应加以掩饰,而应该堂堂正正地承认。这样的文...
    a困酱阅读 372评论 0 0
  • 我喜欢有光的地方,满满的爱和美好。
    崔崔小姐阅读 223评论 0 0