《R数据可视化手册》学习笔记3---条形图(1)简单条形图

写在前面。

条形图一般用来展示不同分类下(x轴)某个数值型变量的取值(y轴)。注意,条形的高度,有时是变量的频数,有时是变量的取值本身,需要注意区分。

条形图

我没有按照书中的章节顺序,而是根据条形高度映射数据类型图形位置图形元素进行了分类整合,使脉络更清晰,知识点更集中

同时随着ggplot2包的更新,书中的一些用法也已经不适用了,因此会做一些更正。

所使用的一些示例数据需要安装加载包gcookbook,同时也需要加载ggplot2

if(!require(gcookbook) ) install.packages("gcookbook")
library(gcookbook)
library(ggplot2)

另外,ggplot2绘图的常用基本语句需要知道:

ggplot(data = , aes(x= , y = ) ) + geom_xxxx() + ...

1. 条形高度

如上文所说,条形的高度有时映射的是变量的取值本身,有时是变量的频数统计值。

1.1 简单条形图

数据中,一个变量表示在x轴的位置,另一个变量表示每个条形的高度,那么映射的也就是变量取值本身。

我们使用数据pg_mean作为示例数据。

> str(pg_mean)
'data.frame':   3 obs. of  2 variables:
 $ group : Factor w/ 3 levels "ctrl","trt1",..: 1 2 3
 $ weight: num  5.03 4.66 5.53

基于此,我们使用ggplot()函数和geom_bar(stat = "identity")

ggplot(data = pg_mean, aes(x= group, y =weight)) + geom_bar(stat = "identity")

[图片上传失败...(image-aacbac-1694394475903)]


上例子,x轴映射的变量离散型变量,如果是连续型变量,会在最大最小值之间取所有可能值作为x轴映射值

BOD数据集作为示例数据集:

> BOD
  Time demand
1    1    8.3
2    2   10.3
3    3   19.0
4    4   16.0
5    5   15.6
6    7   19.8

绘图如下:

ggplot(data = BOD, aes(x= Time, y =demand)) + geom_bar(stat = "identity")

[图片上传失败...(image-cd9d89-1694394475903)]


可以使用factor函数将x取值转换为离散型数据

ggplot(data = BOD, aes(x= factor(Time), y =demand)) + geom_bar(stat = "identity")

[图片上传失败...(image-32b0ee-1694394475903)]


可以看到,x转换前后图形是不同的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容